Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2620
Title: Highly Reliable Impedimetric Sensor Based on Silver Nanoparticle-Functionalized Composites of Graphene Oxide and Ionic Liquid for the Detection of Trace Levels of the Pesticide Malathion
Authors: Lu, Tianqi
Weheabby, Saddam
Anurag, Adiraju
Li, Zongyan
Li, Yang
Al-Hamry, Ammar
Pašti, Igor 
Kanoun, Olfa
Keywords: impedance spectroscopy;malathion (MLT) detection;reliability;Sensor materials;thin-film impedimetric sensor
Issue Date: 1-Jan-2025
Journal: IEEE Sensors Letters
Abstract: 
Malathion (MLT), a widely used organophosphate pesticide for global pest control, presents substantial risks to both human health and ecosystems. Therefore, the development of a rapid and efficient detection method is critical to mitigate its harmful effects. This study proposes a novel thin-film impedimetric sensor designed for the reliable detection of MLT pesticide residues based on laser-induced graphene electrodes coated with a sensing composite material comprising graphene oxide, 1-butyl-3-methylimidazolium hexafluorophosphate, and silver nanoparticles. Mechanical and electrochemical stabilities are enhanced by the integration of polyvinyl chloride (PVC) and 2-nitrophenyl octyl ether (o-NPOE) into framework materials. The sensor exhibited excellent sensitivity toward MLT in the concentration range of 1 – 200 nm. The charge transfer resistance Rct increases by 304.08% at a concentration of 200 nm. The sensor shows minimal interference and good reproducibility and repeatability. A change in Rct of 15.61% over 30 days confirms good stability. Using framework materials enhances the long-term stability by 11.45 times compared to sensors without them. The synergistic effects of the three sensitive materials and the structural support from PVC and o-NPOE enable outstanding detection capabilities. The novel sensor has a high potential for pesticide residue detection in the environment, providing a reliable and efficient tool for preserving ecosystems, supporting sustainable agriculture, and ensuring compliance with environmental regulations.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/2620
DOI: 10.1109/LSENS.2025.3549518
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

2
checked on Feb 2, 2026

Page view(s)

17
checked on Jan 27, 2026

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry