Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2505
Title: Samarium-Doped PbO2 Electrocatalysts for Environmental and Energy Applications: Theoretical Insight into the Mechanisms of Action Underlying Their Carbendazim Degradation and OER Properties
Authors: Kaluđerović, Milica
Savić, Slađana
Bajuk-Bogdanović, Danica 
Jovanović, Aleksandar 
Rakočević, Lazar
Vlahović, Filip
Milikić, Jadranka 
Stanković, Dalibor
Keywords: anodic oxidation;density functional theory;electrochemical degradation;fungicide;oxygen evolution reaction;rare earth elements
Issue Date: 1-May-2025
Journal: Processes
Abstract: 
This study presents the fabrication of a samarium-doped Ti/Sb-SnO2/PbO2 electrode and investigates its applications in polluted water treatment and energy conversion. Physicochemical properties were characterized by scanning electron microscopy with energy-dispersive X-ray spectroscopy, X-ray powder diffraction analysis, and Raman spectroscopy. The Ti/Sb-SnO2/Sm-PbO2 electrode showed 2.5 times higher oxygen evolution potential activity than the Ti/Sb-SnO2/PbO2 electrode. Density Functional Theory was used to conduct first-principles calculations, and the obtained results indicated that Sm doping enhances the production of reactive oxygen species. The application of the Ti/Sb-SnO2/Sm-PbO2 electrode in carbendazim (CBZ) removal was investigated, since CBZ is a fungicide whose presence in the environment, including food, water, and soil, poses a threat. After 60 min of the treatment under optimized working parameters, the degradation rate of CBZ reached 94.2% in the presence of 7.2 g/L Na2SO4 with an applied current density of 10 mA/cm2 in an acidic medium (pH 4). Of the four investigated parameters, the current density had the most significant influence on the degradation process. At the same time, the initial pH value of the solution was shown to have the least impact on degradation efficiency. These results imply a potential use of the proposed treatment for CBZ removal from wastewater.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/2505
DOI: 10.3390/pr13051459
Appears in Collections:Journal Article

Show full item record

Page view(s)

17
checked on Aug 25, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry