Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/230
Title: Analysis of lead-based archaeological pottery glazes by laser induced breakdown spectroscopy
Authors: Kuzmanović, Miroslav 
Stancalie, A.
Milovanovic, D.
Staicu, A.
Damjanović-Vasilić, Ljiljana 
Ranković, Dragan 
Savovic, J.
Keywords: Archaeological pottery;Elemental analysis;Lead-glazes;LIBS;XRF
Issue Date: 1-Feb-2021
Journal: Optics and Laser Technology
Abstract: 
The aim of this study was to demonstrate the potential of Laser-Induced Breakdown Spectroscopy (LIBS) in the analysis of pottery shards, which are commonly the most abundant artefacts recovered at archaeological sites. The analytical capability of LIBS in identification of elements characteristic to inorganic pigments used for decoration was assessed. Based on the specific elements detected in the LIBS spectra of glazes, correlations between the elemental composition of the glaze and the colours of the glazed surface were established. The results were in accordance with the previously reported Energy Dispersive X-ray Fluorescence (EDXRF) and Raman analyses of some of the samples, and with the presently performed XRF analysis. Two important parameters for plasma characterization, temperature and electron number density, were estimated from the spectral data. A potential use of LIBS for depth profiling was also investigated by analysing the silicon to aluminium intensity ratio as a function of the number of laser shots applied. Profilometry analysis of the damages created on the glazed surfaces by laser shots was used to estimate the average ablation depth and ablated mass.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/230
ISSN: 0030-3992
DOI: 10.1016/j.optlastec.2020.106599
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

13
checked on Jun 2, 2025

Page view(s)

27
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry