Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/98
Title: Adsorption of Acetonitrile on Platinum and its Effects on Oxygen Reduction Reaction in Acidic Aqueous Solutions—Combined Theoretical and Experimental Study
Authors: Pašti, Igor 
Marković, Aleksandra
Gavrilov, Nemanja 
Mentus, Slavko V. 
Keywords: Acetonitrile;Acidic media;Adsorption;Oxygen reduction reaction;Platinum
Issue Date: 1-May-2016
Journal: Electrocatalysis
Abstract: 
Combined theoretical and experimental study of acetonitrile (AcN) adsorption on platinum was performed and its effects on the kinetics of oxygen reduction reaction in HClO4 and H2SO4 solutions were examined. Using periodic density functional theory calculations, it was shown that AcN molecule can interact with Pt surface either through the unsaturated π electron system or via lone electron pair of nitrogen atom. In both cases, adsorption energy decreases upon increasing coverage, while the modification of electronic structure of Pt surface is localized to the adsorption site. By combining the results of the DFT calculations with the results of blank cyclic voltammetry and rotating disk electrode voltammetry in O2-saturated solutions, it was concluded that the effects of AcN on Pt surface chemistry and ORR kinetics are primarily steric in nature. Resulting measured ORR activities of polycrystalline platinum in the presence of AcN are due to the combination of (i) suppression of (bi)sulfate adsorption (in H2SO4 solution), (ii) suppression of surface oxidation (in both H2SO4 an HClO4 solution), and (iii) site blockage by adsorbed AcN (or products of its electrochemical transformations). [Figure not available: see fulltext.]
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/98
ISSN: 1868-2529
DOI: 10.1007/s12678-016-0301-6
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

17
checked on Jun 2, 2025

Page view(s)

29
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry