Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/88
Title: Investigation of electrocatalytic activity on a N-doped reduced graphene oxide surface for the oxygen reduction reaction in an alkaline medium
Authors: Chanda, Debabrata
Dobrota, Ana 
Hnát, Jaromir
Sofer, Zdenek
Pašti, Igor 
Skorodumova, Natalia V.
Paidar, Martin
Bouzek, Karel
Keywords: ab initio calculations;Microwave synthesis;Nitrogen-doped graphene;Oxygen reduction reaction
Issue Date: 5-Jul-2018
Journal: International Journal of Hydrogen Energy
Abstract: 
Today the search for new energy resources is a crucial topic for materials science. The development of new effective catalysts for the oxygen reduction reaction can significantly improve the performance of fuel cells as well as electrocatalytic hydrogen production. This study presents the scalable synthesis of nitrogen-doped graphene oxide for the oxygen reduction reaction. The combination of an ab initio theoretical investigation of the oxygen reduction reaction (ORR) mechanism and detailed electrochemical characterization allowed the identification of electrocatalytically active nitrogen functionalities. The dominant effect on electrocatalytic activity is the presence of graphitic and pyridinic nitrogen and also N-oxide functionalities. The overpotential of ORR for nitrogen-doped graphene oxide prepared by microwave-assisted synthesis outperformed the metal-doped graphene materials.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/88
ISSN: 0360-3199
DOI: 10.1016/j.ijhydene.2018.05.012
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

36
checked on Jul 5, 2025

Page view(s)

15
checked on Jul 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry