Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/690
Title: PtAu nanoparticles supported by reduced graphene oxide as a highly active catalyst for hydrogen evolution
Authors: Rakočević, Lazar
Stojković Simatović, Ivana 
Maksić, Aleksandar
Rajić, Vladimir
Štrbac, Svetlana
Srejić, Irina
Keywords: Gold;Graphene;Hydrogen evolution;Platinum;PtAu nanoparticles;SEM;XPS
Issue Date: 1-Jan-2022
Journal: Catalysts
Abstract: 
PtAu nanoparticles spontaneously deposited on graphene support, PtAu/rGO, have shown remarkably high catalytic activity for hydrogen evolution reaction (HER) in sulfuric acid solution. SEM images of the PtAu/rGO electrode surface showed that Pt nanoparticles that are non-uniform in size occupy both the edges of previously deposited uniform Au nanoparticles and the edges of graphene support. XPS analysis showed that the atomic percentages of Au and Pt in PtAu/rGO were 0.6% and 0.3%, respectively. The atomic percentage of Au alone on previously prepared Au/rGO was 0.7%. Outstanding HER activity was achieved for the PtAu/rGO electrode, showing the initial potential close to the equilibrium potential for HER and a low Tafel slope of −38 mV/dec. This was confirmed by electrochemical impedance spectroscopy. The chronoamperometric measurement performed for 40 min for hydrogen evolution at a constant potential indicated good stability and durability of the PtAu/rGO electrode.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/690
DOI: 10.3390/catal12010043
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

18
checked on Jun 2, 2025

Page view(s)

19
checked on Jun 5, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry