Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/683
Title: Versatile insertion capability of Na<inf>1.2</inf>V<inf>3</inf>O<inf>8</inf> nanobelts in aqueous electrolyte solutions
Authors: Vujković, Milica 
Šljukić Paunković, Biljana 
Stojković Simatović, Ivana 
Mitrić, M.
Sequeira, C. A.C.
Mentus, Slavko 
Keywords: Aqueous solutions;Intercalation kinetics;Na V O 1.2 3 8;Nanobelts;Soft-chemistry synthesis
Issue Date: 20-Nov-2014
Journal: Electrochimica Acta
Abstract: 
Single phase nanobelt-like Na1.2V3O8 was synthesized by precipitation from aqueous solution of V2O5, H2O2 and NaOH, and subsequent annealing at 400 oC. The product was characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. As measured by both galvanostatic charging/discharging and cyclic voltammetry methods, in air-equilibrated aqueous electrolyte solutions containing nitrates of lithium, sodium and magnesium, this compound displayed fast intercalation/deintercalation reactions. The galvanostatic charging and discharging curves observed at rates ranging 500-7000 mA g-1, did not display clear plateaus characteristic of phase changes. The discharging capacities were found to range 101-35, 55-17 and 67-22 mAh g-1 for Li, Na and Mg intercalation, respectively. By cyclic voltammetry, for the sweep rates increasing in the range 5-400 mV s-1 (roughly 9-700 C), the capacity was found to decrease within the limits 63-35 mAh g-1 for Li+ intercalation, and 40 -11 mAh g-1 for Na+ and Mg2+ intercalation, respectively. By analyzing the dependence log (current) versus log (sweep rate), the interval of potentials corresponding to preferably diffusion control of intercalation/deintercalation processes was determined.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/683
ISSN: 0013-4686
DOI: 10.1016/j.electacta.2014.08.137
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

17
checked on Jun 2, 2025

Page view(s)

22
checked on Jun 5, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry