Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/66
Title: Developing an advanced electrocatalyst derived from triangular silver nanoplates@polyvinylpyrrolidone-polyaniline nanocomposites
Authors: Stamenović, Una
Vodnik, Vesna
Gavrilov, Nemanja 
Pašti, Igor 
Otončar, Mojca
Mitrić, Miodrag
Škapin, Srečo D.
Keywords: Electrocatalyst;Nanocomposite;Oxygen reduction reaction;Polyaniline;Triangular silver nanoplates
Issue Date: 1-Nov-2019
Journal: Synthetic Metals
Abstract: 
There is a need for developing new and perspective materials for oxygen reduction reaction (ORR) as one of the most essential reactions in the life processes, energy storage, and conversion, in order to exchange the most often used materials based on platinum supported/unsupported substrates, especially carbon supports. Herein, we present low-cost alternative electrode materials consisting of two silver@polyvinylpyrrolidone-polyaniline (Ag@PVP-PANI) nanocomposites that showed great potential as Pt-free ORR electrocatalysts. Simple and effective polymerization processes of aniline in the methanol, using PVP as shape-mediated stabilizator and stimulator of its oxidation by silver ions, led to the formation of nanocomposites with truncated triangular silver nanoparticles dispersed throughout granular and wrinkle-like surfaces of PANI matrix. The behavior of PVP chains in acidic conditions showed great influence on nanocomposites’ conductivities, regardless of the high silver content. Electrocatalytic survey of nanocomposites examined in alkaline media toward ORR pointed out their appreciable activities with high ORR onset potentials. Moreover, for the nanocomposite with lower silver content (18.9 wt. %), the four-electron ORR pathway was evidenced.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/66
ISSN: 0379-6779
DOI: 10.1016/j.synthmet.2019.116173
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

7
checked on Jun 2, 2025

Page view(s)

20
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry