Please use this identifier to cite or link to this item:
https://dspace.ffh.bg.ac.rs/handle/123456789/495
Title: | Structural, spectroscopic, quantum chemical, and molecular docking study towards cartilage protein of (3E,3′E)-3,3′-(1,4-phenylenebis(azanediyl))bis(cyclohex-2-en-1-one) | Authors: | Jeeva, P. Sudha, S. Rakić, Aleksandra Dimić, Dušan Ramarajan, D. Barathi, D. |
Keywords: | Cartilage proteins;DFT;Fukui functions;IR;Molecular docking;Raman | Issue Date: | 15-Feb-2023 | Journal: | Journal of Molecular Structure | Abstract: | This article presents the results of the structural and spectroscopic analysis of (3E,3′E)-3,3′-(1,4-phenylenebis(azanediyl))bis(cyclohex-2-en-1-one) by the means of IR, Raman, NMR, and Density functional theory methods. The structure of the compound was optimized at the B3LYP/6-311++G(d,p) level of theory. The NMR spectra were predicted using the Gauge Independent Atomic Orbital approach. The mean absolute differences between experimental and theoretical chemical shifts were 0.44 and 2.3 ppm for 1H and 13C NMR spectra thus proving the applicability of the chosen level of theory. The vibrational (IR and Raman) spectra were assigned based on the optimized structure following the Potential Energy Distribution (PED) analysis. The intermolecular interactions governing the stability of the compound were investigated by the Natural Bond Orbital and Quantum Theory of Atoms in Molecules analyses. The active positions in the compound were assessed by the Fukui functions calculation and Molecular electrostatic potential map. The inhibitory activity of the compound was analyzed by molecular docking toward cartilage proteins. This activity, along with the groups included in interactions, proved the activity of various parts of the molecule. The inhibitory activity was higher than that of a native ligand. The ecotoxicity assessment proved low toxicity towards aquatic organisms. These results show the high potential of enaminone derivatives obtained under mild conditions. |
URI: | https://dspace.ffh.bg.ac.rs/handle/123456789/495 | ISSN: | 0022-2860 | DOI: | 10.1016/j.molstruc.2022.134429 |
Appears in Collections: | Journal Article |
Show full item record
SCOPUSTM
Citations
14
checked on Dec 30, 2024
Page view(s)
31
checked on Dec 31, 2024
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.