Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/48
Title: Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos
Authors: Bondzic, Aleksandra M.
Lazarevic Pasti, Tamara D.
Pašti, Igor 
Bondzic, Bojan P.
Momcilovic, Milos D.
Loosen, Alexandra
Parac-Vogt, Tatjana N.
Keywords: AChE;adsorption;hydrolysis;MOFs;neurotoxicity;NU-1000;pesticides
Issue Date: 25-Mar-2022
Journal: ACS Applied Nano Materials
Abstract: 
Organophosphate-based pesticides have remarkably contributed to the agriculture industry, but their toxicity has a large negative impact on the environment as well as on the health of humans and other living organisms. Most of the methods developed to remedy the organophosphate pesticide toxicity are very time-consuming and are based on their adsorption onto different materials and/or their degradation to nontoxic species. In this study, detoxification of three structurally different organophosphate pesticides was investigated using an NU-1000 metal-organic framework. We showed that NU-1000 is an excellent agent for fast (average time ≤ 3 min) and effective removal of organophosphate pesticides with an aromatic heterocyclic moiety. In particular, superior detoxification of chlorpyrifos solution after NU-1000 treatment was achieved after only 1 min. The combination of experimental and computational methods revealed that the synergic effects of sorption and hydrolysis are responsible for the superior removal of CHP by NU-1000. The sorption process occurs on the Zr node (chemisorption) and pyrene linkers (physisorption) following pseudo-first-order kinetics during the first minute, and a pseudo-second-order model fits the entire time range. The multilayer adsorption of chlorpyrifos or its hydrolyzed product, 3,5,6-trichloro-2-pyridinol, takes place on a pyrene linker, whereas the aliphatic part of the molecule remains chemisorbed on the Zr node. Such unique synergy between induced sorption and hydrolysis of chlorpyrifos by NU-1000 results in its fast and effective removal with rapid detoxification in non-buffered solutions.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/48
DOI: 10.1021/acsanm.1c03863
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

16
checked on Oct 23, 2025

Page view(s)

57
checked on Oct 22, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry