Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/422
Title: Bimetallic PdM (M = Fe, Ag, Au) alloy nanoparticles assembled on reduced graphene oxide as catalysts for direct borohydride fuel cells
Authors: Martins, Marta
Šljukić Paunković, Biljana 
Metin, Önder
Sevim, Melike
Sequeira, César A.C.
Şener, Tansel
Santos, Diogo M.F.
Keywords: Borohydride oxidation reaction;Direct borohydride fuel cell;Oxygen reduction reaction;Palladium alloys;Reduced graphene oxide
Issue Date: 1-Jan-2017
Journal: Journal of Alloys and Compounds
Abstract: 
The development of highly active and inexpensive electrode materials is crucial to improve the performance of fuel cells and to boost their commercialisation. In this work, a series of bimetallic palladium alloy nanoparticles assembled on reduced graphene oxide, namely PdFe/rGO, PdAg/rGO and PdAu/rGO, was prepared and tested for oxygen reduction reaction (ORR) and borohydride oxidation reaction (BOR) in alkaline media. The morphology and structure of the as-prepared PdM alloy NPs and PdM/rGO electrocatalysts were characterised by XRD, TEM, XPS and ICP-MS and their electrochemical activity was investigated by cyclic and linear scan voltammetry, chronoamperometry, and rotating disc electrode measurements. Among the tested electrocatalysts, PdAu/rGO demonstrated the best performance by providing high current densities for both ORR and BOR. The number of electrons exchanged during ORR at PdAu/rGO, PdAg/rGO and PdFe/rGO electrocatalysts was calculated to be 4.0, 2.8 and 2.0, whereas Tafel slopes were evaluated to be 0.202, 0.182 and 0.173 V dec−1, respectively. BOR at PdAu/rGO and PdFe/rGO proceeds with 5.5 and 2 electrons exchanged, respectively, and the reaction order ranged from 0.4 for PdAg/rGO to 1 for PdAu/rGO. Furthermore, effect of temperature was studied and BOR activation energy determined to be 23 kJ mol−1.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/422
ISSN: 0925-8388
DOI: 10.1016/j.jallcom.2017.05.058
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

68
checked on Jun 2, 2025

Page view(s)

18
checked on Jun 4, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry