Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/386
Title: SnO<inf>2</inf>-C supported PdNi nanoparticles for oxygen reduction and borohydride oxidation
Authors: Šljukić Paunković, Biljana 
Martins, Marta
Kayhan, Emine
Balčiūnaitė, Aldona
Şener, Tansel
Sequeira, César A.C.
Santos, Diogo M.F.
Keywords: Borohydride oxidation reaction;Fuel cell electrode;Oxygen reduction reaction;Palladium-nickel alloy;Tin oxide-carbon composite
Issue Date: 15-Jul-2017
Journal: Journal of Electroanalytical Chemistry
Abstract: 
Palladium-nickel nanoparticles supported on different tin oxide-carbon composites, namely PdNi/(SnO2-KB600), PdNi/(SnO2-KB300) and PdNi/(SnO2-graphene), as well as on Vulcan XC-72 (PdNi/Vulcan), are prepared and characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and field emission scanning electron microscopy (FESEM). The electrocatalytic activity of each material for the oxygen reduction reaction (ORR) and borohydride oxidation reaction (BOR) is studied in alkaline media by voltammetric techniques using rotating disk electrode (RDE) and rotating ring disk electrode (RRDE). ORR and BOR parameters, such as number of exchanged electrons, kinetic current density, Tafel slope and activation energy, are calculated. ORR n values at 0.2 V are close to 4 for PdNi/(SnO2-KB600) and PdNi/Vulcan, and close to 2 for PdNi/(SnO2-KB300) and PdNi/(SnO2-graphene). BOR n values range from 1.9 for PdNi/(SnO2-graphene) to 3.4 for PdNi/(SnO2-KB300). The materials stability is examined by chronoamperometry. The obtained results show that PdNi nanoparticles anchored on SnO2-KB600 support are good electrocatalyst candidates for both ORR and BOR in alkaline media.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/386
ISSN: 1572-6657
DOI: 10.1016/j.jelechem.2017.05.013
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

20
checked on Jun 9, 2025

Page view(s)

24
checked on Jun 9, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry