Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/358
Title: PdNi alloy nanoparticles assembled on cobalt ferrite-carbon black composite as a fuel cell catalyst
Authors: Martins, Marta
Metin, Önder
Šljukić Paunković, Biljana 
Sevim, Melike
Sequeira, César
Santos, Diogo
Keywords: Borohydride oxidation reaction;Cobalt ferrite;Low-temperature fuel cell;Oxygen reduction reaction;Palladium nickel alloy
Issue Date: 24-May-2019
Journal: International Journal of Hydrogen Energy
Abstract: 
PdNi alloy nanoparticles (NPs) were synthesized and then readily assembled on the composite of cobalt ferrite NPs with Vulcan XC-72 carbon (CoFe2O4-VC). The electrocatalyst performance of the yielded PdNi/CoFe2O4-VC composite was tested in borohydride fuel cell reactions in alkaline media. The structure/morphology of colloidal CoFe2O4 and PdNi alloy NPs along with the yielded CoFe2O4-VC composite and PdNi/CoFe2O4-VC electrocatalyst were examined by TEM, powder XRD and ICP-MS. Both monodisperse CoFe2O4 and PdNi alloy NPs with 11 and 4 nm average size, respectively, were discernible over the VC support material by the TEM images of the electrocatalyst. The loading ratio of CoFe2O4 and PdNi alloy NPs in the composite was found to be 16.1 wt% and 2.7 wt%, respectively, as determined by ICP-MS. The performance of PdNi/CoFe2O4-VC as a novel electrocatalyst for oxygen reduction (ORR) and borohydride oxidation (BOR) reactions in alkaline media was studied by voltammetric techniques using a rotating disk electrode. ORR and BOR parameters such as number of exchanged electrons and kinetic current density were calculated. The results revealed that PdNi/CoFe2O4-VC electrocatalyst was highly efficient for both ORR and BOR with exchange of 3.2 and 6.6 electrons, respectively.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/358
ISSN: 0360-3199
DOI: 10.1016/j.ijhydene.2018.12.221
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

16
checked on Jun 4, 2025

Page view(s)

8
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry