Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/301
Title: Influence of the electron donor properties of hypericin on its sensitizing ability in DSSCs
Authors: Cvetanovic Zobenica, Katarina
Lacnjevac, Uros
Etinski, Mihajlo 
Vasiljevic-Radovic, Dana
Stanisavljev, Dragomir 
Issue Date: 1-Aug-2019
Journal: Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology
Abstract: 
Rising demands for renewable energy sources have led to the development of dye sensitized solar cells. It is a challenge to find a good and low cost sensitizer, which has a low environmental impact. In this work, we conducted spectroscopic and electrochemical experiments, as well as quantum-chemical calculations of the natural pigment hypericin, in order to provide insight into its sensitizing efficiency. To this end, three identical cells were made and characterized. Although this pigment exhibited good adsorption onto a semiconductor surface, a high molar absorption coefficient (43 700 L mol-1 cm-1) and favorable alignment of energy levels and provided a long lifetime of electrons (17.8 ms) in the TiO2 photoanode, it was found that the efficiency of hypericin-sensitized solar cells was very low, only 0.0245%. We suggest that this inefficiency originated from a low injection of electrons into the conduction band of TiO2. This conclusion is supported by the density functional theory calculations which revealed a low electron density in the anchoring groups of electronically excited hypericin. The results of this work could be valuable not only in the photovoltaic aspect, but also for application of hypericin in medicine in photodynamic therapy.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/301
ISSN: 1474-905X
DOI: 10.1039/c9pp00118b
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

4
checked on Jun 2, 2025

Page view(s)

19
checked on Jun 5, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry