Please use this identifier to cite or link to this item:
https://dspace.ffh.bg.ac.rs/handle/123456789/280
Title: | Simulation of UV absorption spectra and relaxation dynamics of uracil and uracil-water clusters | Authors: | Milovanović, Branislav Novak, Jurica Etinski, Mihajlo Domcke, Wolfgang Došlić, Nađa |
Issue Date: | 4-Feb-2021 | Journal: | Physical chemistry chemical physics : PCCP | Abstract: | Despite many studies, the mechanisms of nonradiative relaxation of uracil in the gas phase and in aqueous solution are still not fully resolved. Here we combine theoretical UV absorption spectroscopy with nonadiabatic dynamics simulations to identify the photophysical mechanisms that can give rise to experimentally observed decay time constants. We first compute and theoretically assign the electronic spectra of uracil using the second-order algebraic-diagrammatic-construction (ADC(2)) method. The obtained electronic states, their energy differences and state-specific solvation effects are the prerequisites for understanding the photodynamics. We then use nonadiabatic trajectory-surface-hopping dynamics simulations to investigate the photoinduced dynamics of uracil and uracil-water clusters. In contrast to previous studies, we found that a single mechanism - the ethylenic twist around the C[double bond, length as m-dash]C bond - is responsible for the ultrafast component of the nonradiative decay, both in the gas phase and in solution. Very good agreement with the experimentally determined ultrashort decay time constants is obtained. |
URI: | https://dspace.ffh.bg.ac.rs/handle/123456789/280 | ISSN: | 1463-9076 | DOI: | 10.1039/d0cp05618a |
Appears in Collections: | Journal Article |
Show full item record
SCOPUSTM
Citations
19
checked on Dec 29, 2024
Page view(s)
28
checked on Jan 2, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.