Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2652
Title: Efficient Removal of Nitrobenzene and Its Compounds by Coconut Shell-Derived Activated Carbon
Authors: Đorđević, Aleksandar M.
Milikić, Jadranka 
Milanković, Vedran
Bogdanović, Danica Bajuk
Radinović, Kristina 
Kaninski, Milica Marčeta
Relić, Dubravka
Stanković, Dalibor
Šljukić Paunković, Biljana 
Keywords: adsorption;bio-based carbon;dinitrobenzene;isotherm model;kinetic model;nitrobenzene
Issue Date: 1-Jul-2025
Journal: Processes
Abstract: 
Activated carbon prepared from coconut shell was characterized using SEM/EDS, N2-sorption, XRD analysis, Raman, and FTIR spectroscopy. It was then evaluated in terms of its capacity to adsorb nitrobenzene, a priority pollutant, from water samples with varying pH levels. Initial studies revealed high adsorption capacity; further studies were broadened to include nitrobenzene derivative, dinitrobenzene, as real samples are expected to contain a mixture of these pollutants. The maximum amount of adsorbed adsorbate increased notably with temperature, reaching 12.88 mg g−1 and 42.75 mg g−1 for nitrobenzene and dinitrobenzene, respectively, at 35 °C. Thermodynamic considerations and determined values of ∆G0 and ∆S0 indicated that the adsorption process of both nitrobenzene and dinitrobenzene is spontaneous and ∆H0 value indicated that it is endothermic in the studied temperature range. A study of the simultaneous adsorption of nitrobenzene and dinitrobenzene indicated a higher affinity toward dinitrobenzene. This study pointed out that coconut shell-derived activated carbon holds high potential as an adsorbent for removing nitrobenzene and its derivatives from water samples.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/2652
DOI: 10.3390/pr13072072
Appears in Collections:Journal Article

Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry