Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2648
Title: Nanocomposite enhanced molecularly imprinted polymer for electrochemical detection of naringenin in plant-based samples
Authors: Milićević, Marija
Isa, Ahmed
Yayla, Seyda
Bajuk-Bogdanović, Danica 
Vengust, Damjan
Spreitzer, Matjaž
Cetinkaya, Ahmet
Hurkul, M Mesud
Jovanović, Sonja
Ozkan, Sibel A
Keywords: Cobalt ferrite nanoparticles;Electrochemical sensor;Graphene oxide;Molecularly imprinted polymer;Naringenin
Issue Date: 8-Sep-2025
Journal: Mikrochimica acta
Abstract: 
A novel molecularly imprinted polymer (MIP)-based electrochemical sensor has been developed for the selective detection of naringenin (NAR) in various real-world samples, including plant extracts, wine, and herbal supplements. To enhance the active surface area and porosity of the glassy carbon electrode (GCE), a 2D/0D nanocomposite composed of graphene oxide (GO) and cobalt ferrite (CFO) nanoparticles, CFO_GO, was incorporated into the sensor design. 4-aminobenzoic acid (4-ABA) was selected as the functional monomer to prepare the MIPs. The polymerization process was performed using ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent, 2-hydroxyethyl methacrylate (HEMA) as the basic monomer, and 2-methylpropiophenone as the initiator. The developed MIP-based sensor was designed for the electrochemical detection of NAR in real samples such as Solanum lycopersicum L. (tomato) fruit, Citrus × limon (L.) Osbeck (lemon), oak (Quercus) bark, red wine, and herbal supplements demonstrate their potential for practical applications in analyzing food and herbal products. Morphological and electrochemical characterizations of the designed NAR/CFO_GO/4-ABA@MIP-GCE sensor were performed using scanning electron microscopy (SEM), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The linear range for the determination of NAR using the indirect method (5.0 mM [Fe(CN)6]-3/-4) was found to be 1.0 × 10-13 M-1.0 × 10-12 M, and the limit of detection (LOD) and limit of quantification (LOQ) for standard solutions were 2.84 × 10-14 and 9.47 × 10-14 M, respectively. As a result of the study, the developed MIP-based electrochemical sensor was suitable for detecting NAR with high specificity, selectivity, and sensitivity. Additionally, recovery studies were performed to determine the practical applicability of the sensor, and the results were satisfactory. The developed sensor platform can be considered a reliable and sensitive analytical tool for determining NAR.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/2648
ISSN: 00263672
DOI: 10.1007/s00604-025-07489-z
Appears in Collections:Journal Article

Show full item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry