Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2539
Title: Holmium Metal Nanoparticle PbO2 Anode Formed by Electrodeposition for Efficient Removal of Insecticide Acetamiprid and Improved Oxygen Evolution Reaction
Authors: Kaludjerović, Milica
Savić, Sladjana
Bajuk-Bogdanović, Danica 
Jovanović, Aleksandar 
Rakočević, Lazar
Roglić, Goran
Milikić, Jadranka 
Stanković, Dalibor
Keywords: PbO2 electrode;acetamiprid;electrochemical degradation;holmium oxide;oxygen evolution reaction;rare-earth oxide
Issue Date: 20-Aug-2025
Journal: Micromachines
Abstract: 
This work examines the possibility of using a PbO2-based electrode doped with the rare-earth metal holmium in the field of oxygen evolution and the development of an efficient method for the degradation of acetamiprid. Acetamiprid is a widely used insecticide and, as such, it very often reaches waterways, where it can cause many problems for wildlife and the environment. X-ray powder diffraction analysis, Raman spectroscopy, and energy-dispersive X-ray spectroscopy results confirmed the structure of Ti/SnO2-Sb2O3/Ho-PbO2, while the morphology of its surface was investigated by scanning electron microscopy with energy-dispersive X-ray spectroscopy. Ti/SnO2-Sb2O3/Ho-PbO2 showed good OER activity in alkaline media with a Tafel slope of 138 mV dec-1. The Ti/SnO2-Sb2O3/Ho-PbO2 electrode shows very good efficiency in removing acetamiprid. By optimizing the degradation procedure, the following operating conditions were obtained: a current density of 20 mA cm-2, a pH value of the supporting electrolyte (sodium sulfate) of 2, and a concentration of the supporting electrolyte of 0.035 M. After optimization, the maximum efficiency of removing acetamiprid (10 mg L-1, 4.5 × 10-5 mol) from water was achieved, 96.8%, after only 90 min of treatment, which represents an efficiency of 1.125 mol cm-2 of the electrode. Additionally, it was shown that the degradation efficiency is strictly related to the concentration of the treated substance.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/2539
ISSN: 2072-666X
DOI: 10.3390/mi16080960
Appears in Collections:Journal Article

Show full item record

Page view(s)

4
checked on Dec 4, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry