Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2476
Title: Catalyzing towards clean energy: tuning the oxygen evolution reaction by amide-functionalized Co(ii) and Ni(ii) pristine coordination polymers
Authors: Paul, Anup
Gusmão, Filipe
Mahmoud, Abdallah G.
Hazra, Susanta
Rakočević, Lazar
Šljukić Paunković, Biljana 
Khan, Rais Ahmad
Guedes da Silva, M. Fátima C.
Pombeiro, Armando J.L.
Issue Date: 25-Apr-2024
Journal: CrystEngComm
Abstract: 
We present the synthesis and characterization of two monometallic coordination polymers, [Co(L)2(H2O)2]n (Co-CP) and [Ni(L)2(H2O)2]n (Ni-CP), alongside a heterobimetallic counterpart, CoNi-CP, derived from an amide-based multifunctional pro-ligand 4-(pyrimidin-5-ylcarbamoyl)benzoic acid (HL), and discussed their electrocatalytic activity in the oxygen evolution reaction (OER). The CPs were characterized using various techniques, including elemental analysis, IR spectroscopy, X-ray diffraction, and thermal and powder XRD analyses. The low-cost amide-functionalized transition metal pristine coordination polymers Co-CP and Ni-CP were demonstrated to catalyze the OER in alkaline media, surpassing the benchmark IrO2 electrocatalyst performance. The heterometallic coordination polymer (CoNi-CP) displayed a lower Tafel slope value (and thus, faster kinetics) and higher long-term durability compared to its monometallic counterparts, Co-CP and Ni-CP. The results obtained show a pristine transition metal heterobimetallic coordination polymer as a low-cost electrocatalyst of great promise and high performance for OER catalysis in alkaline media.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/2476
DOI: 10.1039/d4ce00179f
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

4
checked on Jun 2, 2025

Page view(s)

8
checked on Jun 4, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry