Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/1992
Title: Influence of acid-base equilibria on the rate of the chemical reaction in the advanced oxidation processes: Coumarin derivatives and hydroxyl radical
Authors: Milanović, Žiko
Dimić, Dušan 
Antonijević, Marko
Žižić, Milan
Milenković, Dejan
Avdović, Edina
Marković, Zoran
Keywords: 4,7-Dihydroxycoumarin;7-Hydroxycoumarin;Kinetic approach;QM-ORSA;Thermodynamic approach
Issue Date: 1-Feb-2023
Journal: Chemical Engineering Journal
Abstract: 
The decomposition and chemical manipulation of stable aromatic pollutants into less toxic products is an important topic for wastewater management and natural water remediation. The mechanism of the Advanced Oxidation Process (AOPs) of 4,7-dihydroxycoumarin (4,7-DHC) and 7-hydroxycoumarin (7-HC), as examples of stable naturally-occurring industrially-important compounds, in the presence of hydroxyl radical (HO[rad]) in the aqueous solution has been analyzed using Electron Paramagnetic Resonance spectroscopy (EPR) and Quantum Mechanics-based test for Overall Free Radical Scavenging Activity (QM-ORSA). The effect of pH values of the medium on the investigated reaction mechanisms has been fully investigated. The rate constants were estimated by the conventional transition state theory (TST) and Eckart's method (ZCT_0). Estimated values of the overall rate constant (koverall) higher than >4.06 × 109 M−1 s−1 at all pH values showed that both compounds undergo a chemical transformation when exposed to HO[rad]. When pH increased in the range of 0–14, the koverall increased from 4.06 × 109 to 1.11 × 1010 (4.7-DHC) and 2.09 × 109 to 1.76 × 1010 M−1s−1 (7-HC). At physiological pH = 7.4 value, 7-HC was ∼1.5 times more prone to radical action, as shown by EPR and QM-ORSA, due to the dominant anionic form. Both compounds were more reactive towards HO[rad] than Trolox at this pH value. The ecotoxicity assessment of the starting compounds, intermediates and oxidation products indicated that the formed products show lower acute and chronic toxicity effects on aquatic organisms than starting compounds, which is a prerequisite for the development of novel AOPs procedures.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/1992
ISSN: 1385-8947
DOI: 10.1016/j.cej.2022.139648
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

23
checked on Jun 3, 2025

Page view(s)

28
checked on Jun 5, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry