Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/1986
Title: The Local Coordination Effects on the Reactivity and Speciation of Active Sites in Graphene-Embedded Single-Atom Catalysts over Wide pH and Potential Range
Authors: Ritopečki, Milica S.
Dobrota, Ana 
Skorodumova, Natalia V.
Pašti, Igor 
Keywords: activity;graphene;Pourbaix plots;reactivity;single-atom catalysts;stability
Issue Date: 1-Dec-2022
Journal: Nanomaterials
Abstract: 
Understanding the catalytic performance of different materials is of crucial importance for achieving further technological advancements. This especially relates to the behaviors of different classes of catalysts under operating conditions. Here, we analyzed the effects of local coordination of metal centers (Mn, Fe, Co) in graphene-embedded single-atom catalysts (SACs). We started with well-known M@N4-graphene catalysts and systematically replaced nitrogen atoms with oxygen or sulfur atoms to obtain M@OxNy-graphene and M@SxNy-graphene SACs (x + y = 4). We show that local coordination strongly affects the electronic structure and reactivity towards hydrogen and oxygen species. However, stability is even more affected. Using the concept of Pourbaix plots, we show that the replacement of nitrogen atoms in metal coordinating centers with O or S destabilized the SACs towards dissolution, while the metal centers were easily covered by O and OH, acting as additional ligands at high anodic potentials and high pH values. Thus, not only should local coordination be considered in terms of the activity of SACs, but it is also necessary to consider its effects on the speciation of SAC active centers under different potentials and pH conditions.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/1986
DOI: 10.3390/nano12234309
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

4
checked on Jun 4, 2025

Page view(s)

32
checked on Jun 7, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry