Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/1981
Title: Galvanic displacement of Co with Rh boosts hydrogen and oxygen evolution reactions in alkaline media
Authors: Nedić Vasiljević, Bojana 
Jovanović, Aleksandar 
Mentus, Slavko 
Skorodumova, Natalia V.
Pašti, Igor 
Keywords: Cobalt;Galvanic displacement;Hydrogen evolution;Oxygen evolution;Water splitting
Issue Date: 1-Jan-2023
Journal: Journal of Solid State Electrochemistry
Abstract: 
The growing energy crisis put an emphasis on the development of novel efficient energy conversion and storage systems. Here we show that surface modification of cobalt by a fast galvanic displacement with rhodium significantly affects the activity towards hydrogen (HER) and oxygen evolution reactions (OER) in alkaline media. After only 20 s of galvanic displacement, the HER overpotential is reduced by 0.16 V and OER overpotential by 0.06 V. This means that the predicted water splitting voltage is reduced from 2.03 V (clean Co anode and cathode) to 1.81 V at 10 mA cm−2 (Rh-exchanged Co electrode). During the galvanic displacement process, the surface roughness of the Co electrode does not suffer significant changes, which suggests an increase in the intrinsic catalytic activity. Density Functional Theory calculations show that the reactivity of the Rh-modified Co(0001) surface is modified compared to that of the clean Co(0001). In the case of HER, experimentally observed activity improvements are directly correlated to the weakening of the hydrogen-surface bond, confirming the beneficial role of Rh incorporation into the Co surface. Graphical abstract: [Figure not available: see fulltext.]
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/1981
ISSN: 1432-8488
DOI: 10.1007/s10008-023-05374-4
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

4
checked on Jun 3, 2025

Page view(s)

68
checked on Jun 4, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry