Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/185
Title: Intermittent chaos in the Bray-Liebhafsky oscillator. Temperature dependence
Authors: Bubanja, Itana Nuša 
Maćešić, Stevan 
Ivanović-Šašić, A
Čupić, Ž
Anić, Slobodan 
Kolar-Anić, Ljiljana 
Issue Date: 14-Apr-2016
Journal: Physical chemistry chemical physics : PCCP
Abstract: 
Intermittent oscillations as a chaotic mixture of large amplitude relaxation oscillations, grouped in bursts and small-amplitude sinusoidal ones or even quiescent parts between them known as gaps, were found and examined in the Bray-Liebhafsky (BL) reaction performed in CSTR under controlled temperature variations. They were obtained in a narrow temperature range from 61.0 °C to 63.1 °C, where 61.0 °C is the critical temperature for burst emergence from the stable steady state and 63.1 °C is the critical temperature for gap emergence from regular oscillations. Since intermittencies appear gradually from the regular oscillatory state, and no hysteresis was obtained with decreasing/increasing temperature in the vicinity of these two bifurcations, a linear relationship between (τB/τ)(2) and (τG/τ)(2) (where τB, τG and τ denotes duration of bursts, gaps, and whole experiment, respectively), as a function of the temperature as the control parameter, was expected and obtained. Although these intermittent oscillations are chaotic with respect to the lengths of individual gaps as well as bursts, their deterministic behavior related to temperature was additionally established. Thus, the number of bursts or gaps per unit of time (NB/τ and NG/τ) has the form of a normal distribution function over the temperature range in the region where intermittencies are obtained. Temperature dependence of the Lyapunov exponents was also described by a function of the normal distribution form. Hence, we established some regularities in the chaotic behavior of intermittent oscillations that are common in life but difficult for determinations.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/185
ISSN: 1463-9076
DOI: 10.1039/c6cp00759g
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

13
checked on Jun 2, 2025

Page view(s)

19
checked on Jun 5, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry