Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Help
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/1624
Title: The adsorption of sulphate, hydrogenchromate and dihydrogenphosphate anions on surfactant-modified clinoptilolite
Authors: Vujaković, Aleksandra D.
Tomaševí-Canović, Magdalena R.
Daković, Aleksandra S.
Dondur, Vera 
Keywords: Adsorption;Anion;Clinoptilolite;Surfactant
Issue Date: 1-Jan-2000
Journal: Applied Clay Science
Abstract: 
The adsorption of sulphate, hydrogenchromate and dihydrogenphosphate anions on surfactant-modified clinoptilolite (SMC) was investigated. The SMCs were prepared by the adsorption of cis-1-aminoctadecen-9 (oleylamine) on both modified and unmodified natural clinoptilolite tuff. The properties of the modified clinoptilolite samples, such as cation type, structure of the zeolite framework and ECEC va...
The adsorption of sulphate, hydrogenchromate and dihydrogenphosphate anions on surfactant-modified clinoptilolite (SMC) was investigated. The SMCs were prepared by the adsorption of cis-1-aminoctadecen-9 (oleylamine) on both modified and unmodified natural clinoptilolite tuff. The properties of the modified clinoptilolite samples, such as cation type, structure of the zeolite framework and ECEC value, determined the mechanism of oleylamine adsorption, and consequently anion adsorption on the external clinoptilolite surface. According to the strength of the anion adsorption, two groups of SMCs could be distinguished: strong and weak anion adsorbents. Strong anion adsorbents were obtained by oleylamine adsorption on H + -clinoptilolites by protonation of the -NH 2 groups. This mechanism of oleylamine adsorption resulted in the surface precipitation mechanism of anion adsorption being the dominant mechanism. The oleylamine derivatives of Ca- and Na-clinoptilolite were weak anion adsorbents. Oleylamine is adsorbed on Ca- and Na-clinoptilolite by hydrogen bonding, thus yielding insufficient adsorption sites for anions. Hydrogenchromate and dihydrogenphosphate anions were nevertheless adsorbed on these SMCs by interaction with oleylamine. The experiments of anion adsorption on various oleylamine loaded SMCs confirmed the existence of two types of anion adsorption sites and showed that excess oleylamine did not significantly influence the anion adsorption in the investigated concentration range. The kinetic results showed that SO 42- and H 2 PO 4- adsorptions were slow processes while HCrO 4- adsorption was completed in a few minutes.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/1624
ISSN: 0169-1317
DOI: 10.1016/S0169-1317(00)00019-3
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

62
checked on Apr 18, 2025

Page view(s)

11
checked on May 14, 2025

Google ScholarTM

Check

Altmetric

55
CITATIONS
55 total citations on Dimensions.
55 Total citations
3 Recent citations
n/a Field Citation Ratio
n/a Relative Citation Ratio

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry

We collect and process your personal information for the following purposes: Authentication, Preferences, Acknowledgement and Statistics.
To learn more, please read our privacy policy.

Customize...