Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/155
Title: Systematic DFT–GGA study of hydrogen adsorption on transition metals
Authors: Vasić, D.
Ristanović, Z.
Pašti, Igor 
Mentus, Slavko 
Keywords: Hydrogen adsorption;Transition metals
Issue Date: 1-Jan-2011
Journal: Russian Journal of Physical Chemistry A
Abstract: 
Computational study of hydrogen adsorption on (111) surface of transition metals with face centered cubic (fcc) lattice is reported and the results are compared with available experimental and theoretical data. In addition, dissociative adsorption of hydrogen on Pt(111), Pt(100) and Pt(110) is studied in the range of coverage from 0.25 to 1 monolayer. In the case of Pt(111) preferential adsorption site was found to be three-coordinated fcc-hollow site, while on Pt(100) and Pt(110) surface hydrogen settles on two-coordinated bridge and short bridge site, respectively. Hydrogen adsorption energy was found to decrease with the increasing coverage. Structural changes of studied Pt surfaces upon hydrogen adsorption have been compared with the experimental data existing in the literature and good qualitative agreement has been obtained.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/155
ISSN: 0036-0244
DOI: 10.1134/S0036024411130334
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

27
checked on Jun 2, 2025

Page view(s)

16
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry