Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/1229
Title: Simultaneous extraction of pesticides of different polarity applying aqueous biphasic systems based on ionic liquids
Authors: Dimitrijević, Aleksandra
Ignjatović, Ljubiša 
Tot, Aleksandar
Vraneš, Milan
Zec, Nebojša
Gadžurić, Slobodan
Trtić-Petrović, Tatjana
Keywords: Aqueous biphasic system;Binding energies;Extraction;Ionic liquids;Non-covalent interactions;Pesticides
Issue Date: 1-Oct-2017
Journal: Journal of Molecular Liquids
Abstract: 
In this paper we report a simultaneous one-step extraction of five pesticides (acetamiprid, imidaclopride, simazine, linuron and tebufenozide) of different polarity using aqueous biphasic system based on 1-butyl-3(methyl or ethyl) substituted imidazolium or pyrrolidinium ionic liquids with bromide or dicyanamide anion and potassium carbonate as a salting-out agent. Experimentally data obtained for the ternary system {ionic liquid + K2CO3 + H2O} were fitted and correlated by Merchuk equation with satisfactory high correlation factor. The effect of the cation alkyl chain length and the variation of anions of the ionic liquid on the aqueous biphasic system formation and the efficiency of pesticide extraction were investigated. Complete extraction of all studied pesticides was obtained applying aqueous biphasic system based on 1-butyl-3-ethyl imidazolium dicyanamide. It was shown that simultaneous extraction of the different polarity pesticides is achieved in a single-step procedure applying properly tailored ionic liquids in the aqueous biphasic system formulation. In order to explain excellent extraction of the polar pesticides in the studied aqueous biphasic systems, molecular dynamics was applied and the binding energies and non-covalent interactions were calculated. It was found that 1-butyl-3-ethyl imidazolium dicyanamide achieves the strongest interactions with the polar pesticides (acetamiprid and imidaclopride) leading to the highest partition coefficients. It was shown that combination of experimental and computational approach can be successfully applied for the selection and design of suitable ionic liquids for efficient extraction of various polarity pesticides using simple aqueous biphasic ionic liquid based systems.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/1229
ISSN: 0167-7322
DOI: 10.1016/j.molliq.2017.08.077
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

30
checked on Jul 12, 2025

Page view(s)

35
checked on Jul 14, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry