Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/1063
Title: Electrical properties of barium titanate stannate functionally graded materials
Authors: Marković, Smilja
Jovalekić, Čedomir
Veselinović, Ljiljana
Mentus, Slavko 
Uskoković, Dragan
Keywords: BaTiO and titanates 3;Electrical properties;Functionally graded materials;Grain boundaries;Sintering
Issue Date: 1-Apr-2010
Journal: Journal of the European Ceramic Society
Abstract: 
Barium titanate stannate (BTS) functionally graded materials (FGMs) with different tin/titanium concentration gradient were prepared by the powder-stacking method and uniaxially pressing process, followed by sintering. Impedance spectroscopy (IS) was used to determine the electrical characteristics of FGMs and ingredient BTS ceramics, as well as to distinguish the grain-interior and grain boundary resistivity of the ceramics. Activation energies of FGMs and ingredients were calculated. It has been established that for BTS ceramics the activation energy deduced from grain-interior conductivity (0.73-0.75 eV) is defined by chemical composition, while activation energy for grain boundary conductivity (1.07-1.25 eV) is influenced by microstructural development (density and average grain size). Furthermore, for FGMs, activation energy for grain-interior conductivity kept the intrinsic properties (0.74-0.78 eV) and did not depend on tin/titanium concentration gradient, while activation energy (1.03-1.29 eV) for grain boundary was determined by the microstructural gradient. No point dissipation was observed by IS, accordingly, no insulator interfaces (cracks and/or delamination) between graded layers were detected. © 2009 Elsevier Ltd. All rights reserved.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/1063
ISSN: 0955-2219
DOI: 10.1016/j.jeurceramsoc.2009.10.020
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

24
checked on Jun 2, 2025

Page view(s)

20
checked on Jun 5, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry