Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/805
Title: Fine-tuning of conductive and dielectric properties of polypyrrole/TiO<inf>2</inf> nanocomposite-coated polyamide fabric
Authors: Radoičić, Marija
Ćirić-Marjanović, Gordana 
Miličević, Dejan
Suljovrujić, Edin
Milošević, Milica
Kuljanin Jakovljević, Jadranka
Šaponjić, Zoran
Keywords: dielectric properties;nanocomposites;PA fabric;Polypyrrole;TiO nanoparticles 2
Issue Date: 1-Jan-2021
Journal: Composite Interfaces
Abstract: 
Structural, conductive and dielectric properties of hybrid Polypyrrole (PPy)-TiO2 nanocomposite-coated polyamide fabric (PA-PPy/TiO2) synthesized by in-situ oxidative polymerization of pyrrole on the surface of polyamide in the presence of colloidal TiO2 NPs (d ~ 4.5 nm) have been studied. Raman spectra confirmed salt form of PPy in both neat PPy and PPy/TiO2-coated PA fabric and indicated its complete coverage. SEM/EDX analysis confirmed presence of TiO2 NPs and changes in granular structure of PPy deposited on the surface of PA fiber depending on the amount of TiO2 NPs. The PA-PPy/TiO2 nanocomposite sample with lowest content of TiO2 NPs (6.79 At.% Ti) showed highest conductivity (~10−6 S/cm) and dissipation factor (tan δ) in the entire frequency range. The lowest amount of TiO2 NPs in the PA-PPy/TiO2 nanocomposite induced two to four orders of magnitude higher tan δ value, compared to neat PPy covered PA fabric, depending on the frequency range. Frequency dependence of real (ϵ′) and imaginary part (ϵ″) of the complex permittivity for neat PA and PPy/TiO2-coated PA fabrics follow the trend of changes in dissipation factor for the same TiO2 NPs concentrations. The presence of TiO2 NPs could be exploited for tuning the conductive and dielectric properties of a conductive layer.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/805
ISSN: 0927-6440
DOI: 10.1080/09276440.2020.1805219
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

9
checked on Jun 2, 2025

Page view(s)

34
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry