Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/713
DC FieldValueLanguage
dc.contributor.authorJovanovic, Marijaen_US
dc.contributor.authorSelmic, Milicaen_US
dc.contributor.authorMacura, Draganaen_US
dc.contributor.authorLavrnic, Slobodanen_US
dc.contributor.authorGavrilovic, Svetlanaen_US
dc.contributor.authorDaković, Markoen_US
dc.contributor.authorRadenkovic, Sandraen_US
dc.contributor.authorSoldatovic, Ivanen_US
dc.contributor.authorStosic-Opincal, Tatjanaen_US
dc.contributor.authorMaksimovic, Ruzicaen_US
dc.date.accessioned2022-12-15T16:49:31Z-
dc.date.available2022-12-15T16:49:31Z-
dc.date.issued2017-09-01-
dc.identifier.issn0937-9347en
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/713-
dc.description.abstractArtificial neuronal network (ANN) in classification of glioblastoma multiforme (GBM) recurrence from treatment effects using advanced magnetic resonance imaging techniques was evaluated. In 56 patients with treated GBM, normalised minimal and mean apparent-diffusion coefficient (ADC) values, vessels number on susceptibility-weighted images (SWI) and Cho/Cr ratio were analysed statistically and by ANN. Significant correlation exists between normalised minimal and mean ADC values, and no correlation between ADC and Cho/Cr values. Cut-off values for tumour presence were: 1.14 for normalised minimal ADC (54% sensitivity, 71% specificity), 1.13 for normalised mean ADC (51% sensitivity, 71% specificity), 1.8 for Cho/Cr ratio (92% sensitivity, 82% specificity), grade 2 for SWI (87% sensitivity, 82% specificity). An accurate prediction of ANN to classify patients into GBM progression or treatment effects group was 99% during the training and 96.8% during the testing phase. Multi-parametric ANN allows distinction between GBM recurrence and treatment effects, and can be used in clinical practice.en
dc.relation.ispartofApplied Magnetic Resonanceen
dc.titleStructural and Metabolic Pattern Classification for Detection of Glioblastoma Recurrence and Treatment-Related Effectsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00723-017-0913-x-
dc.identifier.scopus2-s2.0-85021868194-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85021868194-
dc.relation.firstpage921en
dc.relation.lastpage931en
dc.relation.issue9en
dc.relation.volume48en
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0001-7455-5584-
Appears in Collections:Journal Article
Show simple item record

Page view(s)

12
checked on Jun 30, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry