Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/634
DC FieldValueLanguage
dc.contributor.authorDjikanović, Danielaen_US
dc.contributor.authorSimonović, Jasnaen_US
dc.contributor.authorSavić, Aleksandaren_US
dc.contributor.authorRistić, Ivanen_US
dc.contributor.authorBajuk-Bogdanović, Danicaen_US
dc.contributor.authorKalauzi, Aleksandaren_US
dc.contributor.authorCakić, Suzanaen_US
dc.contributor.authorBudinski-Simendić, Jaroslavaen_US
dc.contributor.authorJeremić, Miloraden_US
dc.contributor.authorRadotić, Ksenijaen_US
dc.date.accessioned2022-12-15T16:17:55Z-
dc.date.available2022-12-15T16:17:55Z-
dc.date.issued2012-06-01-
dc.identifier.issn1566-2543en
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/634-
dc.description.abstractIn a plant cell wall, lignin is synthesized from several monomeric precursors, combined in various ratios. The variation in monomer type and quantity enables multifunctional role of lignin in plants. Thus, it is important to know how different combinations of lignin monomers impact variability of bond types and local structural changes in the polymer. Lignin model polymers are a good model system for studies of relation between variations of the starting monomers and structural variations within the polymer. We synthesized lignin model polymers from three monomers, CF-based on coniferyl alcohol and ferulic acid in monomer proportions 5:1 and 10:1 (w/w), CP-based on coniferyl alcohol and p-coumaric acid in proportion 10:1 (w/w) and CA-based on pure coniferyl alcohol. We studied structural modifications in the obtained polymers, by combining fluorescence microscopy and spectroscopy, FT-IR and Raman spectroscopy, in parallel with determination of polymers' molecular mass distribution. The differences in the low M w region of the distribution curves of the 10:1 polymers in comparison with the CA polymer may be connected with the increased content of C=C bonds and decreased content of condensed structures, as observed in FT-IR spectra and indicated by the analysis of fluorescence spectra. The 5:1 CF polymer contains a different type of structure in comparison with the 10:1 CF polymers, reflected in its simpler M w distribution, higher homogeneity of the fluorescence emitting structures and in the appearance of a new high-wavelength emission component. We propose that this component may originate from π-conjugated chains, which are longer in this polymer. The results are a contribution to the understanding of the involvement of structural variations of lignin polymers in the cell wall structural plasticity. © 2012 Springer Science+Business Media, LLC.en
dc.relation.ispartofJournal of Polymers and the Environmenten
dc.subjectFluorescence spectroscopyen
dc.subjectLignin model polymersen
dc.subjectMolecular mass distributionen
dc.subjectPhenylpropanoid monomersen
dc.subjectSynthesisen
dc.titleStructural Differences Between Lignin Model Polymers Synthesized from Various Monomersen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10924-012-0422-9-
dc.identifier.scopus2-s2.0-84861183288-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84861183288-
dc.relation.firstpage607en
dc.relation.lastpage617en
dc.relation.issue2en
dc.relation.volume20en
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-2443-376X-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

17
checked on Jun 2, 2025

Page view(s)

20
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry