Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/622
DC FieldValueLanguage
dc.contributor.authorKashima, Keitaen_US
dc.contributor.authorFujisaki, Tomoyukien_US
dc.contributor.authorSerrano-Luginbühl, Sandraen_US
dc.contributor.authorKhaydarov, Abbosen_US
dc.contributor.authorKissner, Reinharden_US
dc.contributor.authorLežaić, Aleksandra Janoševićen_US
dc.contributor.authorBajuk-Bogdanović, Danicaen_US
dc.contributor.authorĆirić-Marjanović, Gordanaen_US
dc.contributor.authorSchuler, Lukas D.en_US
dc.contributor.authorWalde, Peteren_US
dc.date.accessioned2022-12-15T16:17:53Z-
dc.date.available2022-12-15T16:17:53Z-
dc.date.issued2018-01-01-
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/622-
dc.description.abstractThe Trametes versicolor laccase (TvL)-catalysed oligomerisation of the aniline dimer p-aminodiphenylamine (PADPA) was investigated in an aqueous medium of pH = 3.5, containing 80-100 nm-sized anionic vesicles formed from AOT, the sodium salt of bis(2-ethylhexyl)sulfosuccinic acid. If run under optimal conditions, the reaction yields oligomeric products which resemble the emeraldine salt form of polyaniline (PANI-ES) in its polaron state, known to be the only oxidation state of linear PANI which is electrically conductive. The vesicles serve as “templates” for obtaining products with the desired PANI-ES-like features. For this complex, heterogeneous, vesicle-assisted, and enzyme-mediated reaction, in which dissolved dioxygen also takes part as a re-oxidant for TvL, small changes in the composition of the reaction mixture can have significant effects. Initial conditions may not only affect the kinetics of the reaction, but also the outcome, i.e., the product distribution once the reaction reaches its equilibrium state. While a change in the reaction temperature from T ≈ 25 to 5 °C mainly influenced the rate of reaction, increase in enzyme concentration and the presence of millimolar concentrations of chloride ions were found to have significant undesired effects on the outcome of the reaction. Chloride ions, which may originate from the preparation of the pH = 3.5 solution, inhibit TvL, such that higher TvL concentrations are required than without chloride to yield the same product distribution for the same reaction runtime as in the absence of chloride. With TvL concentrations much higher than the elaborated value, the products obtained clearly were different and over-oxidised. Thus, a change in the activity of the enzyme was found to have influence not only on kinetics but also led to a change in the final product distribution, molecular structure and electrical properties, which was a surprising find. The complementary analytical methods which we used in this work were in situ UV/vis/NIR, EPR, and Raman spectroscopy measurements, in combination with a detailed ex situ HPLC analysis and molecular dynamics simulations. With the results obtained, we would like to recall the often neglected or ignored fact that it is important to describe and pay attention to the experimental details, since this matters for being able to perform experiments in a reproducible way.en
dc.relation.ispartofRSC Advancesen
dc.titleHow experimental details matter. The case of a laccase-catalysed oligomerisation reactionen_US
dc.typeArticleen_US
dc.identifier.doi10.1039/C8RA05731A-
dc.identifier.scopus2-s2.0-85054859897-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85054859897-
dc.relation.firstpage33229en
dc.relation.lastpage33242en
dc.relation.issue58en
dc.relation.volume8en
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-2443-376X-
crisitem.author.orcid0000-0002-1050-7003-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

6
checked on Jun 4, 2025

Page view(s)

27
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry