Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/617
DC FieldValueLanguage
dc.contributor.authorPopa, Alexandruen_US
dc.contributor.authorBorcanescu, Silvanaen_US
dc.contributor.authorHolclajtner Antunović, Ivankaen_US
dc.contributor.authorBajuk-Bogdanović, Danicaen_US
dc.contributor.authorUskoković-Marković, Snežanaen_US
dc.date.accessioned2022-12-15T16:17:53Z-
dc.date.available2022-12-15T16:17:53Z-
dc.date.issued2021-02-01-
dc.identifier.issn1380-2224en
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/617-
dc.description.abstractIn this study, the preparation of some large-pore ordered mesoporous silicas using a proper surfactant with different swelling agents was carried out. The synthesis of conventional SBA-15 was modified to obtain pore-expanded materials, with pore diameters up to 10 nm. To use a micelle swelling agent with a moderate swelling ability, three swelling agents were selected: 1-phenyl-decane (Dec), butyl benzene (BB), and mesitylene (Mes). These syntheses aimed to achieve a pore diameter enlargement but at the same time to avoid the formation of heterogeneous and/or poorly defined nanostructure of silica. The CO2 adsorbents were obtained by post-synthesis functionalization treatments carried out by grafting with 3-aminopropyl triethoxysilane. The CO2 adsorption/desorption experiments showed that carbon dioxide sorption capacities depend on the textural characteristics and the temperature used for the adsorption process. Good CO2 adsorption capacities were obtained for all prepared adsorbents, especially for SSBA-15-Mes-sil and SSBA-15-BB-sil samples. At 50 °C, the SSBA-15-Mes-sil sample has an adsorption capacity of 3.58 mmol CO2/g SiO2, and an efficiency of amino groups of 0.99 mmol CO2/mmol NH2. The results of adsorption capacities are comparable or even superior with the ones reported in literature for mesoporous silica functionalized with different amines. After nine adsorption–desorption cycles, the performance of the SSBA-15-Mes-sil adsorbent is relatively stable, with a low decrease in the adsorption capacity (0.1 mmol/g of CO2, i.e., 2.8% of initial capacity). These studies show the potential of mesoporous silica for carbon dioxide capture.en
dc.relation.ispartofJournal of Porous Materialsen
dc.subjectCO adsorption 2en
dc.subjectFunctionalized materialsen
dc.subjectMass spectrometryen
dc.subjectSwelling agenten
dc.subjectTemperature influenceen
dc.titlePreparation and characterisation of amino-functionalized pore-expanded mesoporous silica for carbon dioxide captureen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10934-020-00974-1-
dc.identifier.scopus2-s2.0-85090145787-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85090145787-
dc.relation.firstpage143en
dc.relation.lastpage156en
dc.relation.issue1en
dc.relation.volume28en
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-1055-9716-
crisitem.author.orcid0000-0003-2443-376X-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

23
checked on Jun 3, 2025

Page view(s)

54
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry