Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/483
DC FieldValueLanguage
dc.contributor.authorOstojić, Bojana Den_US
dc.contributor.authorStanković, Branislaven_US
dc.contributor.authorĐorđević, Dragana Sen_US
dc.contributor.authorSchwerdtfeger, Peteren_US
dc.date.accessioned2022-12-15T16:01:45Z-
dc.date.available2022-12-15T16:01:45Z-
dc.date.issued2022-08-31-
dc.identifier.issn1463-9076en
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/483-
dc.description.abstractCO2 capture, conversion and storage belong to the holy grail of environmental science. We therefore explore an important photochemical hydride transfer reaction of benzimidazoline derivatives with CO2 in a polar solvent (dimethylsulfoxide) by quantum-chemical methods. While the excited electronic state undergoing hydride transfer to formate (HCOO-) shows a higher reaction path barrier compared to the ground state, a charge-transfer can occur in the near-UV region with nearly barrierless access to the products involving a conical intersection between both electronic states. Such radiationless decay through the hydride transfer reaction and formation of HCCO-via excited electronic states in suitable organic compounds opens the way for future photochemical CO2 reduction. We provide a detailed analysis for the chemical CO2 reduction to the formate anion for 15 different benzimidazoline derivatives in terms of thermodynamic hydricities (ΔGH-), activation free energies (ΔG‡HT), and reaction free energies (ΔGrxn) for the chosen solvent dimethylsulfoxide at the level of density functional theory. The calculated hydricities are in the range from 35.0 to 42.0 kcal mol-1i.e. the species possess strong hydride donor abilities required for the CO2 reduction to formate, characterized by relatively low activation free energies between 18.5 and 22.2 kcal mol-1. The regeneration of the benzimidazoline can be achieved electrochemically.en
dc.language.isoenen
dc.relation.ispartofPhysical chemistry chemical physics : PCCPen
dc.titleLight-driven reduction of CO2: thermodynamics and kinetics of hydride transfer reactions in benzimidazoline derivativesen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1039/d2cp02867k-
dc.identifier.pmid35980288-
dc.identifier.scopus2-s2.0-85136857916-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85136857916-
dc.relation.firstpage20357en
dc.relation.lastpage20370en
dc.relation.issue34en
dc.relation.volume24en
item.fulltextNo Fulltext-
item.languageiso639-1en-
item.grantfulltextnone-
item.openairetypeJournal Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0003-1649-9005-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

4
checked on Jun 2, 2025

Page view(s)

19
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry