Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/425
DC FieldValueLanguage
dc.contributor.authorMartins, Martaen_US
dc.contributor.authorŠljukić Paunković, Biljanaen_US
dc.contributor.authorSequeira, César A.C.en_US
dc.contributor.authorMetin, Önderen_US
dc.contributor.authorErdem, Mehmeten_US
dc.contributor.authorSener, Tanselen_US
dc.contributor.authorSantos, Diogo M.F.en_US
dc.date.accessioned2022-12-13T18:50:37Z-
dc.date.available2022-12-13T18:50:37Z-
dc.date.issued2016-07-06-
dc.identifier.issn0360-3199en
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/425-
dc.description.abstractDesigning highly active and cost-effective electrocatalysts is essential for accelerating commercialization of fuel cell technology. In this work, oxygen reduction reaction (ORR) and borohydride oxidation reaction (BOR) are both investigated on monodisperse palladium nanoparticles (Pd NPs) supported on Vulcan XC72 as well as on two prepared carbon materials obtained from different biosources, namely grape stalk activated carbon (GSAC) and vine shoots activated carbon (VSAC). The electrocatalysts are characterized using TEM and XRD and their activity for ORR and BOR in alkaline media is studied using linear scan voltammetry with rotating ring-disk electrode. ORR and BOR onset potentials and number of exchanged electrons reveal significantly higher activity of the Pd NPs supported on biobased carbons compared to the one supported on Vulcan XC72. Pd/GSAC shows good activity towards direct 4-electron ORR, whereas Pd/VSAC electrocatalyst has improved performance for BOR. Namely, number of exchanged electrons in ORR at Pd/GSAC and Pd/VSAC was evaluated to be approximately 4 and 2, respectively. Conversely, number of exchanged electrons in BOR was found to be 2.0 and 5.6 for Pd/GSAC and Pd/VSAC, respectively.en
dc.relation.ispartofInternational Journal of Hydrogen Energyen
dc.subjectBiobased carbon supporten
dc.subjectBorohydride oxidation reactionen
dc.subjectOxygen reduction reactionen
dc.subjectPalladium nanoparticlesen
dc.subjectRotating ring-disk electrodeen
dc.titleBiobased carbon-supported palladium electrocatalysts for borohydride fuel cellsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ijhydene.2016.04.039-
dc.identifier.scopus2-s2.0-84992311300-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/84992311300-
dc.relation.firstpage10914en
dc.relation.lastpage10922en
dc.relation.issue25en
dc.relation.volume41en
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
crisitem.author.orcid0000-0003-0203-4012-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

30
checked on Jun 4, 2025

Page view(s)

20
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry