Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/377
DC FieldValueLanguage
dc.contributor.authorGouda, M. H.en_US
dc.contributor.authorGouveia, W.en_US
dc.contributor.authorElessawy, N. A.en_US
dc.contributor.authorŠljukić Paunković, Biljanaen_US
dc.contributor.authorNassr, AB B.A.A.en_US
dc.contributor.authorSantos, D. M.F.en_US
dc.date.accessioned2022-12-13T18:50:30Z-
dc.date.available2022-12-13T18:50:30Z-
dc.date.issued2020-05-29-
dc.identifier.issn0360-3199en
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/377-
dc.description.abstractNanocomposite membranes for low-temperature fuel cells, specifically, direct borohydride fuel cells (DBFCs), are formulated from a ternary polymer blend of poly (vinyl alcohol), poly (vinyl pyrrolidone), and poly (ethylene oxide) with the incorporation of (SO4–TiO2) nanotubes and (PO4–TiO2) as doping agents. The functionalisation of TiO2 is carried out by impregnation-calcination method. Structural and morphological characterisation by FTIR, TEM, SEM, EDX, ICP, and XRD confirmed the successful preparation of the doping materials and their incorporation into the polymer blend. The influence of SO4–TiO2 and PO4–TiO2 doping and their content on the physicochemical properties of the composite membranes is assessed. Water uptake and swelling degree gradually reduced to below 20% with increasing the concentration of TiO2-based doping agent, while the ion exchange capacity raised 3.5 times compared to that of the undoped membrane. The increase of the doping agent content also increased the ionic conductivity, tensile strength and thermal stability of the membrane. DBFC using the composite membrane produced a maximum power density of 75 mW cm−2, close to that using Nafion®117 membrane (81 mW cm−2) but at a significantly lower cost. The promising results obtained in this study pave the way for a simple, green and economic approach for the development of composite membranes for application in DBFCs.en
dc.relation.ispartofInternational Journal of Hydrogen Energyen
dc.subjectDirect borohydride fuel cellen
dc.subjectNanocomposite membraneen
dc.subjectPVA/PEO/PVP blenden
dc.subjectSO (PO )-functionalised TiO 4 4 2en
dc.titleSimple design of PVA-based blend doped with SO<inf>4</inf>(PO<inf>4</inf>)-functionalised TiO<inf>2</inf> as an effective membrane for direct borohydride fuel cellsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ijhydene.2020.04.013-
dc.identifier.scopus2-s2.0-85084141723-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85084141723-
dc.relation.firstpage15226en
dc.relation.lastpage15238en
dc.relation.issue30en
dc.relation.volume45en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.cerifentitytypePublications-
item.openairetypeArticle-
item.grantfulltextnone-
crisitem.author.orcid0000-0003-0203-4012-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

35
checked on Jul 20, 2025

Page view(s)

26
checked on Jul 26, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry