Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/275
DC FieldValueLanguage
dc.contributor.authorPuthenkalathil, Rakesh Cen_US
dc.contributor.authorEtinski, Mihajloen_US
dc.contributor.authorEnsing, Bernden_US
dc.date.accessioned2022-12-13T18:46:28Z-
dc.date.available2022-12-13T18:46:28Z-
dc.date.issued2020-05-20-
dc.identifier.issn1463-9076en
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/275-
dc.description.abstractThe Fe2(bdt)(CO)6 [bdt = benzenedithiolato] complex, a synthetic mimic of the [FeFe] hydrogenase enzyme can electrochemically convert protons into molecular hydrogen. Molecular understanding of the cascade of reaction steps is important for the design of more efficient catalysts. In this study, we investigate the reaction mechanism of the hydrogen production catalysis in explicit solution of acetonitrile using first principles molecular dynamics simulations. We have characterized all reduction and protonation intermediates taking part in the catalytic cycle. Free energy surfaces of the activated reaction steps are calculated using metadynamics. We find that the second protonation leading to molecular hydrogen formation is the rate limiting step. Direct protonation of the bridging hydride by a proton from the solution to form H2 is the most favorable reaction pathway. However, also a bdt sulfur atom can become protonated, leading to a possible proton trap state that reduces the catalytic efficiency. Our calculations validate the ECEC mechanism proposed using cyclic voltammetry.en
dc.language.isoenen
dc.relation.ispartofPhysical chemistry chemical physics : PCCPen
dc.titleUnraveling the mechanism of biomimetic hydrogen fuel production - a first principles molecular dynamics studyen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1039/c9cp06770a-
dc.identifier.pmid32186293-
dc.identifier.scopus2-s2.0-85085263958-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85085263958-
dc.relation.firstpage10447en
dc.relation.lastpage10454en
dc.relation.issue19en
dc.relation.volume22en
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeJournal Article-
item.grantfulltextnone-
item.languageiso639-1en-
crisitem.author.orcid0000-0003-0342-7045-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

6
checked on Jul 19, 2025

Page view(s)

36
checked on Jul 25, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry