Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2525
DC FieldValueLanguage
dc.contributor.authorPetrović, Tamaraen_US
dc.contributor.authorVasić, Milicaen_US
dc.contributor.authorMilović, Milošen_US
dc.contributor.authorBajuk-Bogdanović, Danicaen_US
dc.contributor.authorMentus, Slavkoen_US
dc.contributor.authorVujković, Milicaen_US
dc.date.accessioned2025-11-13T12:50:42Z-
dc.date.available2025-11-13T12:50:42Z-
dc.date.issued2025-01-01-
dc.identifier.issn02728842-
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/2525-
dc.description.abstractIn light of the growing needs for high-performing, safe, low-cost and eco-friendly energy storage systems, herein, the CaV<inf>2</inf>O<inf>6</inf>–based composite (CaVO400/C) is studied as a potential cathode host for the Zn<sup>2+</sup>ion storage in aqueous rechargeable zinc-ion batteries (AZIBs). The CaVO400/C composite, synthesized via malonic acid-assisted solution combustion method (including calcination at 400 °C), is subjected to thorough electrochemical and structural analyses. Its electrochemical performance in a half-cell configuration is evaluated in three different 3 M zinc aqueous electrolytes: Zn(NO<inf>3</inf>)<inf>2</inf>, ZnSO<inf>4</inf>and ZnCl<inf>2</inf>. Over a large number of CV cycles, the electrochemical behaviour of the composite is markedly different depending on the electrolyte (anion type and pH value). The most favourable electrochemical behaviour is observed in Zn(NO<inf>3</inf>)<inf>2</inf>, where high and quite stable redox activity is retained over 400 cycles. In contrast, the performance in ZnSO<inf>4</inf>is diminished by dissolution of active vanadium species during initial cycling (pH = 4) or prolonged cycling (pH = 2), while after cycling, the formation of Zn<inf>4</inf>(SO<inf>4</inf>)(OH)<inf>6</inf>·nH<inf>2</inf>O phase is detected on the electrode. The ZnCl<inf>2</inf>electrolyte leads to a complete loss of activity due to vanadium consumption: for pH = 5 - caused by irreversible transformation of the electrochemically active phase into the inactive one, Zn<inf>3</inf>(OH)<inf>2</inf>V<inf>2</inf>O<inf>7</inf>·2H<inf>2</inf>O, and for pH = 2 – caused by consecutive formation and dissolution of Zn<inf>3</inf>(OH)<inf>2</inf>V<inf>2</inf>O<inf>7</inf>·2H<inf>2</inf>O. It is suggested that formation of the proton-doped vanadium oxide species as the active phase, during cycling in Zn(NO<inf>3</inf>)<inf>2</inf>electrolyte, facilitates the efficient Zn<sup>2+</sup>storage in the CaVO400/C electrode, enabling insertion/deinsertion specific capacity of ∼167/145 and ∼119/115 mAh g<sup>−1</sup>at 500 and 2000 mA g<sup>−1</sup>, respectively, in a half-cell configuration.en_US
dc.relation.ispartofCeramics Internationalen_US
dc.subjectAqueous electrolytesen_US
dc.subjectCalcium vanadium oxideen_US
dc.subjectHigh Zn2+storage capacityen_US
dc.subjectProton co-insertionen_US
dc.subjectZn2+ion insertion/deinsertionen_US
dc.titleThe role of aqueous electrolytes in the electrochemical performance of calcium vanadate cathode for Zn-ion storageen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.ceramint.2025.10.229-
dc.identifier.scopus2-s2.0-105019779642-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105019779642-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.cerifentitytypePublications-
crisitem.author.orcid0000-0001-5410-580X-
crisitem.author.orcid0000-0003-2443-376X-
crisitem.author.orcid0000-0001-8155-8003-
crisitem.author.orcid0000-0002-0518-8837-
Appears in Collections:Journal Article
Show simple item record

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry