Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2523
DC FieldValueLanguage
dc.contributor.authorPetrušić, Igoren_US
dc.contributor.authorMessina, Robertaen_US
dc.contributor.authorPellesi, Lanfrancoen_US
dc.contributor.authorAzorin, David Garciaen_US
dc.contributor.authorChiang, Chia-Chunen_US
dc.contributor.authorPietra, Adriana Dellaen_US
dc.contributor.authorHa, Woo-Seoken_US
dc.contributor.authorLabastida-Ramirez, Alejandroen_US
dc.contributor.authorOnan, Dilaraen_US
dc.contributor.authorOrnello, Raffaeleen_US
dc.contributor.authorRaffaelli, Biancaen_US
dc.contributor.authorRubio-Beltran, Eloisaen_US
dc.contributor.authorRuscheweyh, Ruthen_US
dc.contributor.authorTana, Claudioen_US
dc.contributor.authorVuralli, Dogaen_US
dc.contributor.authorWaliszewska-Prosół, Martaen_US
dc.contributor.authorWang, Weien_US
dc.contributor.authorWells-Gatnik, William Daviden_US
dc.contributor.authorMartelletti, Paoloen_US
dc.contributor.authorRaggi, Albertoen_US
dc.date.accessioned2025-11-05T13:21:29Z-
dc.date.available2025-11-05T13:21:29Z-
dc.date.issued2025-10-02-
dc.identifier.issn11292369-
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/2523-
dc.description.abstractMigraine is a complex neurological disorder with diverse clinical phenotypes and a multifaceted pathophysiology, which poses substantial challenges for accurate diagnosis, subtype differentiation, and biomarker discovery. Machine learning (ML) techniques have emerged as promising tools for classifying migraine patients and uncovering the underlying neurobiological mechanisms that differentiate migraine types and subtypes. This systematic review identifies current ML classification models for migraine types and subtypes, evaluating the quality, reproducibility, and clinical utility of published studies. The findings demonstrate that current ML models, particularly support vector machines and linear discriminant analysis, can accurately classify migraine patients based on structural and functional neuroimaging features with accuracies ranging from 75 to 98%. However, quality assessment revealed significant methodological heterogeneity across studies, including inconsistent reporting of model performance, insufficient patient phenotyping, small and imbalanced datasets, and limited external validation. These limitations hinder the global generalizability and reproducibility of these studies. We propose a roadmap for future research emphasizing well-characterized clinical subgrouping, standardized data acquisition and feature engineering protocols, transparency in model development and reporting, and collaborative multicentric designs to enable large-scale validation. Furthermore, this review stresses the importance of incorporating real-world phenotypic data, such as treatment response, comorbidities, and digital phenotyping metrics, to enrich ML models and support the transition toward precision medicine in migraine care. Ultimately, this review highlights the urgent need for methodological rigor in migraine ML classification studies to bridge the gap between experimental success and clinical applicability.en_US
dc.language.isoenen_US
dc.relationMinistry of Science, Technological Development and Innovation, Republic of Serbiaen_US
dc.relation.ispartofThe journal of headache and painen_US
dc.subjectArtificial intelligenceen_US
dc.subjectClassification algorithmsen_US
dc.subjectDeep learningen_US
dc.subjectMigraine typesen_US
dc.subjectNeuroimagingen_US
dc.subjectSupport vector machineen_US
dc.titleApplication of machine learning in migraine classification: a call for study design standardization and global collaborationen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1186/s10194-025-02134-9-
dc.identifier.pmid41039195-
dc.identifier.scopus2-s2.0-105017565479-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/105017565479-
dc.relation.grantno451-03-136/2025-03/200146en_US
dc.relation.firstpage200en_US
dc.relation.issue1en_US
dc.relation.volume26en_US
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
item.languageiso639-1en-
crisitem.author.orcid0000-0002-5412-7328-
Appears in Collections:Journal Article
Show simple item record

Page view(s)

4
checked on Nov 5, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry