Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2520
Title: Advanced nitrogen-doped transition metal oxides decorated with Pt: synthesis and composition strategies for maximised electrochemical performance
Authors: Gočanin, Kristina
Aykut, Yasemin
Mladenović, Dušan 
Santos, Diogo M F
Bayrakçeken, Ayşe
Soylu, Gulin S P
Šljukić Paunković, Biljana 
Issue Date: 23-Sep-2025
Journal: Dalton transactions (Cambridge, England : 2003)
Abstract: 
Developing efficient, low-cost catalysts for oxygen reduction and evolution reactions (ORR and OER) is key to advancing metal-air batteries and regenerative fuel cells. In this study, nitrogen-doped binary metal (Mn and Ni) oxides (N-BMOs) and Pt-decorated N-BMOs were synthesised using three methods and tested as ORR and OER catalysts in alkaline media. Their physicochemical properties were characterised by XRD, N2-sorption, TEM, and XPS, while their electrochemical performance was evaluated using voltammetry and impedance spectroscopy. Among all tested materials, the best bifunctional catalyst proved to be Pt/N-Mn2O3-NiO (1 : 1) (S3) with the highest achieved diffusion limited current density (-4.98 mA cm-2 at 1800 rpm), the highest kinetic current density (-15.3 mA cm-2), low Tafel slope (75 mV dec-1) in ORR potential region, and overpotential of 0.56 V to reach benchmark current value of 10 mA cm-2 during OER. The ΔE was calculated to be 0.95 V, comparable to or even better than that of similar materials reported in the literature. Pt/N-Mn2O3-NiO (1 : 1) (S3) demonstrated striking stability during long-term operation with preserved morphology and catalytic activity.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/2520
ISSN: 14779226
DOI: 10.1039/d5dt01211b
Appears in Collections:Journal Article

Show full item record

Page view(s)

4
checked on Nov 5, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry