Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/24
DC FieldValueLanguage
dc.contributor.authorLačnjevac, Urošen_US
dc.contributor.authorVasilić, Rastkoen_US
dc.contributor.authorDobrota, Anaen_US
dc.contributor.authorĐurđić, Slađanaen_US
dc.contributor.authorTomanec, Ondřejen_US
dc.contributor.authorZbořil, Radeken_US
dc.contributor.authorMohajernia, Shivaen_US
dc.contributor.authorNguyen, Nhat Truongen_US
dc.contributor.authorSkorodumova, Nataliaen_US
dc.contributor.authorManojlović, Draganen_US
dc.contributor.authorElezović, Nevenkaen_US
dc.contributor.authorPašti, Igoren_US
dc.contributor.authorSchmuki, Patriken_US
dc.date.accessioned2022-12-12T18:10:29Z-
dc.date.available2022-12-12T18:10:29Z-
dc.date.issued2020-11-21-
dc.identifier.issn2050-7488en
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/24-
dc.description.abstractDeveloping ultraefficient electrocatalytic materials for the hydrogen evolution reaction (HER) with low content of expensive platinum group metals (PGMs) via low-energy-input procedures is the key to the successful commercialization of green water electrolysis technologies for sustainable production of high-purity hydrogen. In this study, we report a facile room-temperature synthesis of ultrafine metallic Ir nanoparticles on conductive, proton-intercalated TiO2 nanotube (H-TNT) arrays via galvanic displacement. A series of experiments demonstrate that a controlled transformation of the H-TNT surface microstructure from neat open-top tubes to disordered nanostripe bundles ("nanograss") is highly beneficial for providing an abundance of exposed Ir active sites. Consequently, for nanograss-engineered composites, outstanding HER activity metrics are achieved even at very low Ir(iii) precursor concentrations. An optimum Ir@TNT cathode loaded with 5.7 μgIr cm-2 exhibits an overpotential of -63 mV at -100 mA cm-2 and a mass activity of 34 A mgIr-1 at -80 mV under acidic conditions, along with excellent catalytic durability and structural integrity. Density functional theory (DFT) simulations reveal that the hydrogen-rich TiO2 surface not only stabilizes the deposited Ir and weakens its H binding strength to a moderate intensity, but also actively takes part in the HER mechanism by refreshing the Ir catalytic sites near the Ir|H-TiO2 interface, thus substantially promoting H2 generation. The comprehensive characterization combined with theory provides an in-depth understanding of the electrocatalytic behavior of H-TNT supported PGM nanoparticles and demonstrates their high potential as competitive electrocatalyst systems for the HER. This journal isen
dc.relation.ispartofJournal of Materials Chemistry Aen
dc.titleHigh-performance hydrogen evolution electrocatalysis using proton-intercalated TiO<inf>2</inf>nanotube arrays as interactive supports for Ir nanoparticlesen_US
dc.typeArticleen_US
dc.identifier.doi10.1039/d0ta07492f-
dc.identifier.scopus2-s2.0-85096105811-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85096105811-
dc.relation.firstpage22773en
dc.relation.lastpage22790en
item.grantfulltextnone-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
item.fulltextNo Fulltext-
item.openairetypeArticle-
crisitem.author.orcid0000-0001-6200-8612-
crisitem.author.orcid0000-0002-1000-9784-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

38
checked on Jun 5, 2025

Page view(s)

24
checked on Jun 7, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry