Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2412
DC FieldValueLanguage
dc.contributor.authorPetrušić, Igoren_US
dc.contributor.authorSavić, Andrejen_US
dc.contributor.authorMitrović, Katarinaen_US
dc.contributor.authorBačanin, Nebojšaen_US
dc.contributor.authorSebastianelli, Gabrieleen_US
dc.contributor.authorSecci, Danieleen_US
dc.contributor.authorCoppola, Gianlucaen_US
dc.date.accessioned2025-01-10T20:57:35Z-
dc.date.available2025-01-10T20:57:35Z-
dc.date.issued2024-12-05-
dc.identifier.issn11292369-
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/2412-
dc.description.abstractThe integration of machine learning (ML) classification techniques into migraine research has offered new insights into the pathophysiology and classification of migraine types and subtypes. However, inconsistencies in study design, lack of methodological transparency, and the absence of external validation limit the impact and reproducibility of such studies. This paper presents a framework of six essential recommendations for evaluating ML-based classification in migraine research: (1) group homogenization by clinical phenotype, attack frequency, comorbidity, therapy, and demographics; (2) defining adequate sample size; (3) quality control of collected and preprocessed data; (4) transparent training, testing, and performance evaluation of ML models, including strategies for data splitting, overfitting control, and feature selection; (5) interpretability of results with clinical relevance; and (6) open data and code sharing to facilitate reproducibility. These recommendations aim to balance the trade-off between model generalization and precision while encouraging collaborative standardization across the ML and headache communities. Furthermore, this framework intends to stimulate discussion toward forming a consortium to establish definitive guidelines for ML-based classification research in migraine field.en_US
dc.language.isoenen_US
dc.relationMinistry of Science, Technological Development and Innovation, Republic of Serbiaen_US
dc.relation.ispartofThe journal of headache and painen_US
dc.subjectBenchmarken_US
dc.subjectData qualityen_US
dc.subjectMachine learning classification modelsen_US
dc.subjectMigraine typesen_US
dc.subjectModel interpretabilityen_US
dc.subjectModel reproducibilityen_US
dc.titleMachine learning classification meets migraine: recommendations for study evaluationen_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1186/s10194-024-01924-x-
dc.identifier.pmid39639193-
dc.identifier.scopus2-s2.0-85211357366-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85211357366-
dc.relation.grantno451-03-66/2024-03/200146en_US
dc.relation.firstpage215en_US
dc.relation.issue1en_US
dc.relation.volume25en_US
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextNo Fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeJournal Article-
item.languageiso639-1en-
crisitem.author.orcid0000-0002-5412-7328-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

2
checked on Jun 2, 2025

Page view(s)

10
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry