Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2346
Title: Toward Humidity-Independent Sensitive and Fast Response Temperature Sensors Based on Reduced Graphene Oxide/Poly(vinyl alcohol) Nanocomposites
Authors: Al-Hamry, Ammar
Pan, Yang
Rahaman, Mahfujur
Selyshchev, Oleksandr
Tegenkamp, Christoph
Zahn, Dietrich R T
Pašti, Igor 
Kanoun, Olfa
Keywords: graphene oxide;humidity sensitivity;nanocomposite;poly(vinyl alcohol);polymer−matrix composites;temperature sensor;thin film
Issue Date: 25-Jun-2024
Journal: ACS applied electronic materials
Abstract: 
Flexible temperature sensors are becoming increasingly important these days. In this work, we explore graphene oxide (GO)/poly(vinyl alcohol) (PVA) nanocomposites for potential application in temperature sensors. The influence of the mixing ratio of both materials, the reduction temperature, and passivation on the sensing performance has been investigated. Various spectroscopic techniques revealed the composite structure and atomic composition. These were complemented by semiempirical quantum chemical calculations to investigate rGO and PVA interaction. Scanning electron and atomic force microscopy measurements were carried out to evaluate dispersion and coated film quality. The temperature sensitivity has been evaluated for several composite materials with different compositions in the range from 10 to 80 °C. The results show that a linear temperature behavior can be realized based on rGO/PVA composites with temperature coefficients of resistance (TCR) larger than 1.8% K-1 and a fast response time of 0.3 s with minimal hysteresis. Furthermore, humidity influence has been investigated in the range from 10% to 80%, and a minor effect is shown. Therefore, we can conclude that rGO/PVA composites have a high potential for excellent passivation-free, humidity-independent, sensitive, and fast response temperature sensors for various applications. The GO reduction is tunable, and PVA improves the rGO/PVA sensor performance by increasing the tunneling effect and band gap energy, consequently improving temperature sensitivity. Additionally, PVA exhibits minimal water absorption, reducing the humidity sensitivity. rGO/PVA maintains its temperature sensitivity during and after several mechanical deformations.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/2346
DOI: 10.1021/acsaelm.4c00729
Appears in Collections:Journal Article

Show full item record

SCOPUSTM   
Citations

4
checked on Jun 3, 2025

Page view(s)

12
checked on Jun 7, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry