Please use this identifier to cite or link to this item:
https://dspace.ffh.bg.ac.rs/handle/123456789/2295
Title: | Copper(II) Complexes with Isomeric Morpholine-Substituted 2-Formylpyridine Thiosemicarbazone Hybrids as Potential Anticancer Drugs Inhibiting Both Ribonucleotide Reductase and Tubulin Polymerization: The Morpholine Position Matters | Authors: | Milunovic, Miljan N M Ohui, Katerina Besleaga, Iuliana Petrasheuskaya, Tatsiana V Dömötör, Orsolya Enyedy, Éva A Darvasiova, Denisa Rapta, Peter Barbieriková, Zuzana Vegh, Daniel Tóth, Szilárd Tóth, Judit Kucsma, Nóra Szakács, Gergely Popović Bijelić, Ana Zafar, Ayesha Reynisson, Jóhannes Shutalev, Anatoly D Bai, Ruoli Hamel, Ernest Arion, Vladimir B |
Issue Date: | 21-May-2024 | Publisher: | ACS Publications | Journal: | Journal of medicinal chemistry | Abstract: | The development of copper(II) thiosemicarbazone complexes as potential anticancer agents, possessing dual functionality as inhibitors of R2 ribonucleotide reductase (RNR) and tubulin polymerization by binding at the colchicine site, presents a promising avenue for enhancing therapeutic effectiveness. Herein, we describe the syntheses and physicochemical characterization of four isomeric proligands H2L3-H2L6, with the methylmorpholine substituent at pertinent positions of the pyridine ring, along with their corresponding Cu(II) complexes 3-6. Evidently, the position of the morpholine moiety and the copper(II) complex formation have marked effects on the in vitro antiproliferative activity in human uterine sarcoma MES-SA cells and the multidrug-resistant derivative MES-SA/Dx5 cells. Activity correlated strongly with quenching of the tyrosyl radical (Y•) of mouse R2 RNR protein, inhibition of RNR activity in the cancer cells, and inhibition of tubulin polymerization. Insights into the mechanism of antiproliferative activity, supported by experimental results and molecular modeling calculations, are presented. |
URI: | https://dspace.ffh.bg.ac.rs/handle/123456789/2295 | ISSN: | 00222623 | DOI: | 10.1021/acs.jmedchem.4c00259 |
Appears in Collections: | Journal Article |
Show full item record
SCOPUSTM
Citations
3
checked on Jan 6, 2025
Page view(s)
14
checked on Jan 6, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.