Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2049
DC FieldValueLanguage
dc.contributor.authorZdolšek, Nikolaen_US
dc.contributor.authorJanković, Bojanen_US
dc.contributor.authorMilović, Milošen_US
dc.contributor.authorBrković, Snežanaen_US
dc.contributor.authorKrstić, Jugoslaven_US
dc.contributor.authorPerović, Ivanaen_US
dc.contributor.authorVujković, Milicaen_US
dc.date.accessioned2023-09-23T18:47:10Z-
dc.date.available2023-09-23T18:47:10Z-
dc.date.issued2022-12-01-
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/2049-
dc.description.abstractThe development of carbon materials with desirable textures and new aqueous electrolytes is the key strategy to improve the performance of supercapacitors. Herein, a deep eutectic solvent (DES) was used for in situ templating of a carbon material. A carbon material was characterized (XRD, N2-physisorption, FTIR, SEM and EDS) and used as an electrode material for the first time in multivalent-based supercapacitors. In situ templating of carbon was performed using a novel DES, which serves as a precursor for carbon and for in situ generation of MgO. The generation of MgO and its roles in templating of carbon were discussed. Templating of carbon with MgO lead to an increase in surface area and a microporous texture. The obtained carbon was tested in multivalent-ion (Al3+ and Mg2+) electrolytes and compared with H2SO4. The charge-storage mechanism was investigated and elaborated. The highest specific capacitance was obtained for the Al(NO3)3 electrolyte, while the operating voltage follows the order: Mg(NO3)2 > Al(NO3)3 > H2SO4. Electrical double-layer capacitance (versus pseudocapacitance) was dominant in all investigated electrolytes. The larger operating voltage in multivalent electrolytes is a consequence of the lower fraction of free water, which suppresses hydrogen evolution (when compared with H2SO4). The GCD was experimentally performed on the Al(NO3)3 electrolyte, which showed good cyclic stability, with an energy density of 22.3 Wh kg−1 at 65 W kg−1.en_US
dc.relationHiSuperBat Promisen_US
dc.relation.ispartofBatteriesen_US
dc.subjectcarbon materialen_US
dc.subjectdeep eutectic solventen_US
dc.subjectelectrochemical supercapacitorsen_US
dc.subjectin situ templatingen_US
dc.subjectmultivalent-ion electrolyteen_US
dc.titleDeep Eutectic Solvent (DES) for In Situ Templating Carbon Material: Carbon Characterization and Application in Supercapacitors Containing Multivalent Ionsen_US
dc.typeArticleen_US
dc.identifier.doi10.3390/batteries8120284-
dc.identifier.scopus2-s2.0-85144877208-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85144877208-
dc.relation.grantnoScience Fund of Republic Serbiaen_US
dc.relation.issue12en_US
dc.relation.volume8en_US
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
item.openairetypeArticle-
item.cerifentitytypePublications-
item.grantfulltextnone-
crisitem.author.orcid0000-0002-0518-8837-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

1
checked on May 15, 2025

Page view(s)

48
checked on May 16, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry