Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2048
DC FieldValueLanguage
dc.contributor.authorJanković, Bojanen_US
dc.contributor.authorManić, Nebojšaen_US
dc.contributor.authorPerović, Ivanaen_US
dc.contributor.authorVujković, Milicaen_US
dc.contributor.authorZdolšek, Nikolaen_US
dc.date.accessioned2023-09-23T18:46:44Z-
dc.date.available2023-09-23T18:46:44Z-
dc.date.issued2023-03-15-
dc.identifier.issn01677322-
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/2048-
dc.description.abstractIn recent years, deep eutectic solvents (DESs) have attracted considerable attention, and they have been applied in many fields, such as dissolution and separation, electrochemistry, materials preparation, reaction, and catalysis. In this paper, a detailed thermal decomposition mechanism of DES-type II (consisting choline chloride (ChCl) and magnesium chloride hexahydrate (MgCl2·6H2O) in a molar ratio 2:1 (MgCl2·6H2O-[Ch]Cl)) was explained, using thermal analysis techniques. Physicochemical clarification of overall thermal decomposition mechanism and the influence of enthalpy–entropy compensation (EEC) on reactions mechanism emerging are presented for the first time, in favor of this DES type. In the kinetic analysis of the decomposition process, two approaches were used: model-free (inverse) and model-based (direct) methods. It was found that thermodynamic principles in the form of EEC are the source of kinetic compensation effect (KCE) during MgCl2·6H2O-[Ch]Cl thermal decomposition, as a consequence of the effects of molecular interactions. Key phenomenon in the complex multiple step process represents a parallel dehydration steps of MgCl2·6H2O in DES, leading to formation of intermediates, such as [MgCl1(H2O)5]1+ and [MgCl2(H2O)4]. It was established that formation of final products (Mg(OH)2 and MgOHCl) requires a higher expenditure of energy to overcome a high potential barrier, where reaction system compensates this energy via hydrogen bonding disruption. This was confirmed by the identification of a specific ‘oscillator’, flagged as H–O–H···Cl hydrogen bond donating system of the energy (“heat bath”). All kinetic parameters and mechanisms of individual reaction steps were confirmed by numerical optimization of the process and modulated dynamic predictions.en_US
dc.relation.ispartofJournal of Molecular Liquidsen_US
dc.subjectDehydrationen_US
dc.subjectEnthalpy-entropy compensation (EEC)en_US
dc.subjectHydrogen bondingen_US
dc.subjectIsokinetic temperatureen_US
dc.subjectKineticsen_US
dc.titleThermal decomposition kinetics of deep eutectic solvent (DES) based on choline chloride and magnesium chloride hexahydrate: New details on the reaction mechanism and enthalpy–entropy compensation (EEC)en_US
dc.typeJournal Articleen_US
dc.identifier.doi10.1016/j.molliq.2023.121274-
dc.identifier.scopus2-s2.0-85149769174-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85149769174-
dc.relation.volume374en_US
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairetypeJournal Article-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-0518-8837-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

14
checked on Jun 10, 2025

Page view(s)

46
checked on Jun 10, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry