Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Book Chapter
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/2031
Title: Thermal Stability and Phase Transformations of Multicomponent Iron-Based Amorphous Alloys
Authors: Vasić, Milica 
Minić, Dušan M.
Minić, Dragica 
Editors: Minić, Dragica 
Vasić, Milica 
Keywords: amorphous alloys, iron, microstructure, crystallization, kinetics, functional properties
Issue Date: 2020
Publisher: IntechOpen
Project: OI172015
Related Publication(s): Metallic Glasses
Abstract: 
Due to their excellent functional properties enabling their applicability in different fields of modern technology, amorphous alloys (metallic glasses) based on iron have been attracting attention of many scientists. In this chapter, the results of multidisciplinary research of five multicomponent iron-based amorphous alloys with different chemical composition, Fe81Si4B13C2, Fe79.8Ni1.5Si5.2B13C0.5, Fe75Ni2Si8B13C2, Fe73.5Cu1Nb3Si15.5B7, and Fe40Ni40P14B6, are summarized in order to study the influence of chemical composition on their physicochemical properties and functionality. The research involved thermal stability, mechanism, thermodynamics, and kinetics of microstructural transformations induced by thermal treatment and their influence on functional properties. Determination of crystallization kinetic triplets of individual phases formed in the alloys is also included. The results obtained for different alloys are compared, correlated, and discussed in terms of the alloy composition and microstructure.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/2031
DOI: 10.5772/intechopen.88260
Appears in Collections:Book Chapter

Show full item record

Page view(s)

78
checked on Jul 3, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry