Please use this identifier to cite or link to this item:
https://dspace.ffh.bg.ac.rs/handle/123456789/178
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Romanovski, Valery G. | en_US |
dc.contributor.author | Han, Maoan | en_US |
dc.contributor.author | Maćešić, Stevan | en_US |
dc.contributor.author | Tang, Yilei | en_US |
dc.date.accessioned | 2022-12-13T17:50:16Z | - |
dc.date.available | 2022-12-13T17:50:16Z | - |
dc.date.issued | 2018-12-01 | - |
dc.identifier.issn | 0170-4214 | en |
dc.identifier.uri | https://dspace.ffh.bg.ac.rs/handle/123456789/178 | - |
dc.description.abstract | We study the dynamics of an autocatalator model, which is described by a 3-dimensional autonomous cubic differential system. We analyze the number and local properties of equilibrium points of the system using methods of the qualitative theory of ordinary differential equations. We also investigate small-amplitude limit cycles bifurcating from an equilibrium state of the system. Some numerical simulations illustrating the obtained theoretical results are presented. | en |
dc.relation.ispartof | Mathematical Methods in the Applied Sciences | en |
dc.subject | autocatalator model | en |
dc.subject | equilibria | en |
dc.subject | Hopf bifurcation | en |
dc.subject | limit cycles | en |
dc.title | Dynamics of an autocatalator model | en_US |
dc.type | Conference Paper | en_US |
dc.identifier.doi | 10.1002/mma.4949 | - |
dc.identifier.scopus | 2-s2.0-85046826133 | - |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85046826133 | - |
dc.relation.firstpage | 9092 | en |
dc.relation.lastpage | 9102 | en |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
item.fulltext | No Fulltext | - |
item.grantfulltext | none | - |
item.openairetype | Conference Paper | - |
crisitem.author.orcid | 0000-0002-2317-7111 | - |
Appears in Collections: | Conference paper |
SCOPUSTM
Citations
3
checked on Dec 31, 2024
Page view(s)
30
checked on Jan 4, 2025
Google ScholarTM
Check
Altmetric
Altmetric
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.