Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/136
DC FieldValueLanguage
dc.contributor.authorPašti, Igoren_US
dc.contributor.authorGavrilov, Nemanja M.en_US
dc.contributor.authorMentus, Slavko V.en_US
dc.date.accessioned2022-12-12T18:10:48Z-
dc.date.available2022-12-12T18:10:48Z-
dc.date.issued2011-09-16-
dc.identifier.issn1687-7985en
dc.identifier.urihttps://dspace.ffh.bg.ac.rs/handle/123456789/136-
dc.description.abstractHydrogen adsorption on twenty different palladium and platinum overlayer surfaces with (111) crystallographic orientation was studied by means of periodic DFT calculations on the GGA-PBE level. Palladium and platinum overlayers here denote either the Pd and Pt mono- and bilayers deposited over (111) crystallographic plane of Pd, Pt, Cu, and Au monocrystals or the (111) crystallographic plane of Pd and Pt monocrystals with inserted one-atom-thick surface underlayer of Pd, Pt, Cu, and Au. The attention was focused on the bond lengths, hydrogen adsorption energetics, mobility of adsorbed hydrogen, and surface reactivity toward hydrogen electrode reactions. Both the ligand and strain effects were considered, found to lead to a significant modification of the electronic structure of Pd and Pt overlayers, described through the position of the d-band center, and tuning of the hydrogen adsorption energy in the range that covers approximately 120kJmol-1. Mobility of hydrogen adsorbed on studied overlayers was found to be determined by hydrogen-metal binding energy. Obtained results regarding Pd layers on Pt(111) and Au(111) surfaces, in conjunction with some of the recent experimental data, were used to explain its electrocatalytic activity towards hydrogen evolution reaction. © 2011 Igor A. Pati et al.en
dc.relation.ispartofAdvances in Physical Chemistryen
dc.titleHydrogen adsorption on palladium and platinum overlayers: DFT studyen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2011/305634-
dc.identifier.scopus2-s2.0-80052671267-
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/80052671267-
item.grantfulltextnone-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeArticle-
item.fulltextNo Fulltext-
crisitem.author.orcid0000-0002-1000-9784-
crisitem.author.orcid0000-0003-2886-1868-
crisitem.author.orcid0000-0001-8155-8003-
Appears in Collections:Journal Article
Show simple item record

SCOPUSTM   
Citations

59
checked on Jul 19, 2025

Page view(s)

21
checked on Jul 23, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry