Skip navigation
  • Logo
  • Home
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
  • Explore by
    • Research Outputs
    • Researchers
    • Projects
  • Sign on to:
    • My DSpace
    • Receive email
      updates
    • Edit Account details
FFH logo

  1. RePhyChem
  2. Research Outputs
  3. Journal Article
Please use this identifier to cite or link to this item: https://dspace.ffh.bg.ac.rs/handle/123456789/1234
Title: Aqueous extraction of anions from coal and fly ash followed by ion-chromatographic determination
Authors: Tasić, Aleksandra M.
Ignjatović, Ivana D.Sredović
Ignjatović, Ljubiša 
Duranović, Danijel
Antić, Mališa P.
Keywords: Anions;Coal;Extraction;Fly ash;Ion chromatography
Issue Date: 1-Jan-2016
Journal: Journal of the Serbian Chemical Society
Abstract: 
Three different techniques were applied for the aqueous extraction of anions from coal and fly ash: rotary mixer- and ultrasonic-assisted extraction with different duration time, and microwave-assisted extraction at different temperatures. Validation showed that the ion-chromatographic method was suitable for the analysis of anions in coal and fly ash extracts. The variations in the amounts of anions using different extraction times during rotary-assisted extraction were minimal for all investigated anions. The efficiency of ultrasound-assisted extraction of anions from coal depended on the sonication time and was highest at 30 min. The ultrasound-assisted extraction was less efficient for the extraction of anions from fly ash than rotary-assisted extraction. Increase of temperature in the microwave-assisted extraction had a positive effect on the amounts of all anions extracted from coal and sulphate from fly ash, while the amounts of fluoride and chloride in fly ash extracts decreased. The microwave-assisted extraction of coal at 150 °C was compared with standard ASTM methods, and results were in good agreement only for chloride. Changes in the pH value and conductivity during ultrasound-assisted extraction were measured in order to explain changes on the surface of coal particles in contact with water and different processes that occur under environmental conditions.
URI: https://dspace.ffh.bg.ac.rs/handle/123456789/1234
ISSN: 0352-5139
DOI: 10.2298/JSC160223086T
Appears in Collections:Journal Article

Show full item record

Page view(s)

27
checked on Jun 6, 2025

Google ScholarTM

Check

Altmetric

Altmetric


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Explore by
  • Communities
    & Collections
  • Research Outputs
  • Researchers
  • Projects
University of Belgrade
Faculty of Physical Chemistry
Studentski trg 12-16
11158 Belgrade 118
PAC 105305
SERBIA
University of Belgrade Faculty of Physical Chemistry